Yu. F. Bogdanov
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu. F. Bogdanov.
Russian Journal of Genetics | 2003
Yu. F. Bogdanov
Meiosis arose in the evolution of primitive unicellular organisms as a part of sexual process. One type of meiosis, the so-called classical type, predominates in all kingdoms of eukaryotes. Meiosis is controlled by hundreds of genes, both shared with mitosis and specifically meiotic ones. In a wide range of taxa, which in some cases include kingdoms, meiotic genes and features obey Vavilovs law of homologous variation series. Synaptonemal complexes (SCs) temporarily binding homologous chromosomes at prophase I, ensure precise and equal crossing over and interference. SC proteins have 60–80% homology within the class of mammals but differ from the corresponding proteins in fungi and insects. Thus, nonhomologous SC proteins perform similar functions in different taxa. Some recombination enzymes in fungi and plants have common epitopes. The molecular mechanism of recombination is inherited by eukaryotes from prokaryotes and operates in special compartments: SC recombination nodules. Chiasmata, i.e., physical crossovers of nonsister chromatids, are preserved in bivalents until metaphase I due to local cohesion of sister chromatids in the remaining SC fragments. Owing to chiasmata, homologous chromosomes participate in meiosis I in pairs rather than individually, which, along with unipolarity of kinetochores (only in meiosis 1), ensures segregation of homologous chromosomes. The appearance of SC and chiasmata played a key role in the evolution of unicellular organisms since it promoted the development of a progressive type of meiosis. Some lower eukaryotes retain primitive meiosis types. These primitive modes of meiosis also occur in the sex of some insects that is heterozygous for sex chromosomes. I suggest an explanation for these cases. Mutations at meiotic genes impair meiosis; however, due to the preservation of archaic meiotic genes in the genotype, bypass metabolic pathways arise, which provide partial rescue of the traits damaged by mutations. Individual blocks of genetic program of meiotic regulation have probably evolved independently.
Theoretical and Applied Genetics | 1992
S. P. Sosnikhina; Yu. S. Fedotova; V. G. Smirnov; E. I. Mikhailova; O. L. Kolomiets; Yu. F. Bogdanov
SummaryA mutant form of weedy rye characterized by male and female sterility and having a hereditary block in the chromosome synapsis has been found and described. Genetic analysis has shown the synapsis block to be determined by the recessive allele of a gene designated as sy-1. Electron microscopy of surface-spread microsporocyte nuclei revealed the complete absence of the synaptonemal complex over the whole meiotic prophase I, although the axial cores were perfectly formed by each chromosome. Only univalents were observed at metaphase I, their average number ranging from 13.1 to 14.0 per cell. A precocious distribution of univalents at the poles is observed at metaphase I. All of the later stages of meiosis were irregular and resulted in the formation of abnormal microspores. Thus, the mutant proves to be asynaptic because of the blocked initiation of synapses at prophase I.
International Review of Cytology-a Survey of Cell Biology | 2007
Yu. F. Bogdanov; T. M. Grishaeva; S. Ya. Dadashev
Meiosis is conserved in all eucaryotic kingdoms, and homologous rows of variability are revealed for the cytological traits of meiosis. To find the nature of these phenomenons, we reviewed the most-studied meiosis-specific proteins and studied them with the methods of bioinformatics. We found that synaptonemal complex proteins have no homology of amino-acid sequence, but are similar in the domain organization and three-dimensional (3D) structure of functionally important domains in budding yeast, nematode, Drosophila, Arabidopsis, and human. Recombination proteins of Rad51/Dmc1 family are conserved to the extent which permits them to make filamentous single-strand deoxyribonucleic acid (ssDNA)-protein intermediates of meiotic recombination. The same structural principles are valid for conservation of the ultrastructure of kinetochores, cell gap contacts, and nuclear pore complexes, such as in the cases when ultrastructure 3D parameters are important for the function. We suggest that self-assembly of protein molecules plays a significant role in building-up of all biological structures mentioned.
Theoretical and Applied Genetics | 1994
Yu. S. Fedotova; Yu. F. Bogdanov; S. A. Gadzhiyeva; S. A. Sosnikhina; V. G. Smirnov; Elena Mikhailova
We studied the expression and inheritance of two spontaneous mutations found in different populations of rye Secale cereale L. that cause high univalent frequency in meiosis and low fertility. Both mutations were inherited as monogenic recessives. For each of the mutations the corresponding gene symbols (sy7 and sy10) were suggested although their allelism has not been studied. These mutants differ in chiasma frequency and in the number of univalents per meiocyte. Electron microscopy of the wholemount surface-spread synaptonemal complexes (SCs) from microsporocytes of both mutants revealed that during meiotic prophase I random synapsis began and progressed that involved not only homologous but also nonhomologous chromosomes. SCs were formed with frequent changes of pairing partners (switches) and intrachromosomal foldbacks of unpaired axial elements. As a result, incompletely synapsed, non-homologous and multivalent SCs were formed in mutants by the stage analogous to pachytene in normal plants. In sy7 a maximum in the number of switches and foldbacks were observed at zygotene, whereas in sy10 this occurred at pachytene. We suggest that it is the process of recognition of homology that is impaired in both mutants. This leads to indiscriminate synapsis and prevents chiasma formation. Both mutants may be classified as desynaptic.
Molecular Biology | 2002
M. V. Penkina; Karpova Oi; Yu. F. Bogdanov
The review considers proteins of the synaptonemal complex (SC), a specific structure formed between homologous chromosomes in maturing germline cells during meiotic prophase I. The structure and functions are described for proteins that form ultrastructural SC elements in mammals, in yeast, and in higher plants. The roles of cohesins and of the SC proteins in meiotic sister-chromatid cohesion are considered. Though still scarce, data are summarized on the SC self-assembly and dissociation and on the molecular composition of SC-associated recombination nodules, which provide a compartment for meiotic recombination enzymes. The accumulating data on the SC molecular components and on their structure, properties, and interactions improve the understanding of the SC function.
Russian Journal of Genetics | 2005
S. P. Sosnikhina; Elena Mikhailova; O. A. Tikholiz; S. N. Priyatkina; V. G. Smirnov; A. V. Voilokov; Yu. S. Fedotova; O. L. Kolomiets; Yu. F. Bogdanov
Genetic collection of meiotic mutants of winter rye Secale cereale L. (2n = 14) was created. Mutations were detected in inbred F2 generations after self-fertilization of the F1 hybrids, obtained by individual crossing of rye plants (cultivar Vyatka) or weedy rye with plants from autofertile lines. The mutations cause partial or complete plant sterility and are maintained in collection in a heterozygous state. Genetic analysis accompanied by cytogenetic study of meiosis has revealed six mutation types. (1) Nonallelic asynaptic mutations sy1 and sy9 caused the formation of only axial chromosome elements in prophase and anaphase. The synaptonemal complexes (SCs) were absent, the formation of the chromosome “bouquet” was impaired, and all chromosomes were univalent in meiotic metaphase I in 96.8% (sy1) and 67% (sy2) of cells. (2) Weak asynaptic mutation sy3, which hindered complete termination of synapsis in prophase I. Subterminal asynaptic segments were always observed in the SC, and at least one pair of univalents was present in metaphase I, but the number of cells with 14 univalents did not exceed 2%. (3) Mutations sy2, sy6, sy7, sy8, sy10, and sy19, which caused partially nonhomologous synapsis: change in pairing partners and fold-back chromosome synapsis in prophase I. In metaphase I, the number of univalents varied and multivalents were observed. (4) Mutation mei6, which causes the formation of ultrastructural protrusions on the lateral SC elements, gaps and branching of these elements. (5) Allelic mutations mei8 and mei8-10, which caused irregular chromatin condensation along chromosomes in prophase I, sticking and fragmentation of chromosomes in metaphase I. (6) Allelic mutations mei5 and mei10, which caused chromosome hypercondensation, defects of the division spindle formation, and random arrest of cells at different meiotic stages. However, these mutations did not affect the formation of microspore envelopes even around the cells, whose development was blocked at prophase I. Analysis of cytological pictures of meiosis in double rye mutants reveled epistatic interaction in the mutation series sy9 > sy1 > sy3 > sy19, which reflects the order of switching these genes in the course of meiosis. The expression of genes sy2 and sy19 was shown to be controlled by modifier genes. Most meiotic mutations found in rye have analogs in other plant species.
Russian Journal of Genetics | 2001
S. P. Sosnikhina; G. A. Kirillova; Elena Mikhailova; O. A. Tikholiz; V. G. Smirnov; Yu. S. Fedotova; O. L. Kolomiets; Yu. F. Bogdanov
Analysis of manifestation and inheritance of a new mutation inducing irregular synapsis in rye showed that abnormal phenotype is determined by a recessive allele of the sy19 gene. In the homozygotes for this mutation, even at the light microscopic level, abnormal formation of bivalents is already observed at pachytene–diakinesis. At metaphase I, the univalent frequency varies from 0 to 14; in a few cells, multivalent associations of chromosomes, which are not clearly oriented in the spindle, are detected. Electron microscopy of synaptonemal complexes revealed both homologous and heterologous synapsis in homozygotes for sy19, namely partial loss of the ability to stringent homology search. Analysis of joint inheritance of sy19 and asynaptic sy1 mutations showed that they are nonallelic, inherited independently, and interact by recessive epistasis. The phenotype of doublesy1sy19 mutants indicates that thesy19 gene conditioning heterologous synapsis operates at meiosis later than the synaptic gene sy1. The epistatic group of mutations, sy9 > sy1 > sy19 and sy3, was determined.
Russian Journal of Genetics | 2002
S. P. Sosnikhina; G. A. Kirillova; O. A. Tikholiz; Elena Mikhailova; V. G. Smirnov; Yu. S. Fedotova; T. F. Mazurova; Yu. F. Bogdanov
The cytological expression of spontaneous mutation sy2 isolated from a population of weedy rye was examined. It was demonstrated that the primary defect of meiosis in the mutant plants is nonhomologous synapsis, which occurs simultaneously with the homologous one. An electron microscope study of the synaptonemal complex (SC) at prophase I showed synaptic abnormalities that were manifested as “switches” of synapting axial elements to the nonhomologous partner and the formation of foldbacks of lateral SC elements. The sy2 mutants are characterized by one to two such events per meiocyte. Nonhomologous synapsis leads to the appearance of univalents at metaphase I (on average 4.16 ± 0.002 per meiocyte) and multivalents (on average 0.12 ± 0.007 per meiocyte). The presence of multivalents in 12% of meiocytes at metaphase I may result from recombination in ectopic regions of homology. It is suggested that the sy2 mutation impairs a component of the system that limits synapsis in meiocytes to only homologous chromosome pairs.
Russian Journal of Genetics | 2007
S. P. Sosnikhina; Elena Mikhailova; O. A. Tikholiz; N. V. Tsvetkova; A. V. Lovtsyus; O. S. Sapronova; Yu. S. Fedotova; O. L. Kolomiets; Yu. F. Bogdanov
The cytological phenotype was studied in a desynaptic form isolated from a population of rye cultivar Vyatka. The primary defect of desynaptic plants was identified as nonhomologous (heterologous) chromosome synapsis, which was observed by electron microscopy of synaptonemal complexes (SCs) in meiotic prophase I. Synapsis defects involved switches of synapsing axial elements to nonhomologous partners, asynapsis in the switching region, and foldbacks formed by the SC lateral elements. Defective bivalent formation was observed at later stages: the univalent number varied and multivalent chromosome associations were observed in single cells in metaphase I. The desynaptic phenotype was controlled by two recessive genes, sy8a and sy8b, which acted and were inherited independently. In a hybrid combination with line Ku-2/63, the desynaptic phenotype was suppressed by the dominant allele of a third gene for inhibitor I; the segregation in hybrid families corresponded to 57:7.
Russian Journal of Genetics | 2016
Yu. F. Bogdanov
Inverted meiosis is observed in plants (Cyperaceae and Juncaceae) and insects (Coccoidea, Aphididae) with holocentric chromosomes, the centromeres of which occupy from 70 to 90% of the metaphase chromosome length. In the first meiotic division (meiosis I), chiasmata are formed and rodlike bivalents orient equationally, and in anaphase I, sister chromatids segregate to the poles; the diploid chromosome number is maintained. Non-sister chromatids of homologous chromosomes remain in contact during interkinesis and prophase II and segregate in anaphase II, forming haploid chromosome sets. The segregation of sister chromatids in meiosis I was demonstrated by example of three plant species that were heterozygous for chromosomal rearrangements. In these species, sister chromatids, marked with rearrangement, segregated in anaphase I. Using fluorescent antibodies, it was demonstrated that meiotic recombination enzymes Spo11 and Rad5l, typical of canonical meiosis, functioned at the meiotic prophase I of pollen mother cells of Luzula elegance and Rhynchospora pubera. Moreover, antibodies to synaptonemal complexes proteins ASY1 and ZYP1 were visualized as filamentous structures, pointing to probable formation of synaptonemal complexes. In L. elegance, chiasmata are formed by means of chromatin threads containing satellite DNA. According to the hypothesis of the author of this review, equational division of sister chromatids at meiosis I in the organisms with inverted meiosis can be explained by the absence of specific meiotic proteins (shugoshins). These proteins are able to protect cohesins of holocentric centromeres from hydrolysis by separases at meiosis I, as occurs in the organisms with monocentric chromosomes and canonical meiosis. The basic type of inverted meiosis was described in Coccoidea and Aphididae males. In their females, the variants of parthenogenesis were also observed. Until now, the methods of molecular cytogenetics were not applied for the analysis of inverted meiosis in Coccoidea and Aphididae. Evolutionary, inverted meiosis is thought to have appeared secondarily as an adaptation of the molecular mechanisms of canonical meiosis to chromosome holocentrism.