Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Feng Zhou is active.

Publication


Featured researches published by Yu-Feng Zhou.


Veterinary Journal | 2014

Integration of pharmacokinetic and pharmacodynamic indices of valnemulin in broiler chickens after a single intravenous and intramuscular administration.

Dong-Hao Zhao; Yu-Feng Zhou; Yang Yu; Wei Shi; Xue Yang; Xia Xiao; Hui Deng; Gui-Lin Qiao; Bing-Hu Fang; Ya-Hong Liu

The antibacterial efficacy of valnemulin against Staphylococcus aureus was studied ex vivo in broiler chickens after intravenous and intramuscular administration at a dose of 10 mg/kg bodyweight (BW). The minimum inhibitory concentrations (MICs) of valnemulin against S. aureus strains ATCC 25923 in broth and serum were 0.12 and 1 µg/mL, respectively. The MIC50 and MIC90 of valnemulin against all susceptible S. aureus strains isolated from chickens in the test population were 0.06 and 0.12 μg/mL, respectively. Protein binding, which greatly influences the efficacy of valnemulin, was assayed by equilibrium dialysate in vitro. A high binding fraction of 86.2% was found, which seems in good agreement with the difference of bacterial susceptibility tests observed in broth and serum. The surrogate index of AUC0-24/MIC required for the lowest bacteriostatic effect, and 2 log10CFU reduction in bacterial count were 24.4 h and 38.0 h, respectively. The required daily dose of valnemulin for a bacteriostatic activity was calculated to be 15 mg/kg BW based on the MIC90 of 0.12 µg/mL. Considering the slow disposition process of valnemulin and an AUC0-24 h value of more than 10-fold obtained from diseased animals, a suggested dose of 3 mg/kg BW is sufficient to achieve a satisfactory therapeutic efficacy in infected broilers. Due to the time-dependent antibacterial characteristics of valnemulin, the recommended daily dose should be split into two or three sub-doses to achieve the highest effectiveness while diminishing the risk of development of bacterial resistance.


Journal of Veterinary Pharmacology and Therapeutics | 2015

A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs.

X. Yang; Yu-Feng Zhou; Yang Yu; Dong-Hao Zhao; Wei Shi; Binghu Fang; Ya-Hong Liu

A multi-compartment physiologically based pharmacokinetic (PBPK) model to describe the disposition of cyadox (CYX) and its metabolite quinoxaline-2-carboxylic acid (QCA) after a single oral administration was developed in rats (200 mg/kg b.w. of CYX). Considering interspecies differences in physiology and physiochemistry, the model efficiency was validated by pharmacokinetic data set in swine. The model included six compartments that were blood, muscle, liver, kidney, adipose, and a combined compartment for the rest of tissues. The model was parameterized using rat plasma and tissue concentration data that were generated from this study. Model simulations were achieved using a commercially available software program (ACSLXL ibero version 3.0.2.1). Results supported the validity of the model with simulated tissue concentrations within the range of the observations. The correlation coefficients of the predicted and experimentally determined values for plasma, liver, kidney, adipose, and muscles in rats were 0.98, 0.98, 0.98, 0.99, and 0.95, respectively. The rat model parameters were then extrapolated to pigs to estimate QCA disposition in tissues and validated by tissue concentration of QCA in swine. The correlation coefficients between the predicted and observed values were over 0.90. This model could provide a foundation for developing more reliable pig models once more data are available.


BMC Veterinary Research | 2015

In vitro dynamic pharmacokinetic/ pharmacodynamic(PK/PD) modeling and PK/PD cutoff of cefquinome against Haemophilus parasuis

Xia Xiao; Jian Sun; Yi Chen; Rui-Juan Huang; Ting Huang; Guilin Gary Qiao; Yu-Feng Zhou; Ya-Hong Liu

BackgroundHaemophilus parasuis (H. parasuis) causes Glässer’s disease and multisystem infectious disease. It is one of the major causes of nursery mortality in swine herds. Cefquinome (CEQ) is proposed for the treatment of pigs against respiratory tract infection. However, few studies have investigated the PK/PD characteristics and PK/PD cutoff of this drug against H. parasuis.ResultsA total of 213 H. parasuis strains were isolated from diseased pigs in China. The minimal inhibitory concentrations (MICs) of CEQ against these isolates were determined. The MIC50 and MIC90 values were 0.125 and 8 mg/L, respectively. An in vitro dynamic PK/PD infection model was used to investigate the antimicrobial effect of CEQ against H. parasuis strain of serotype 5. The target values of CEQ for 3-log10-unit and 4-log10-unit decreases effects were the percent time that CEQ concentrations were above the minimum inhibitory concentration (T% > MIC) of 61 and 71 respectively. According to Monte Carlo simulation, the PK/PD cutoff for CEQ against H. parasuis was 0.06 mg/L. The suggested dose regimen was 4 mg/kg/12 h BW.ConclusionsThe value of PK/PD surrogate marker T% > MIC is of great utility in CEQ clinical usage. The very first CEQ PK/PD cutoff provide fundamental data for CEQ breakpoint determination. A more desirable dose regimen against H. parasuis was provided for CEQ using in China district.


BMC Veterinary Research | 2015

In vitro Dynamic Pharmacokinetic/Pharamcodynamic (PK/PD) study and COPD of Marbofloxacin against Haemophilus parasuis

Jian Sun; Xia Xiao; Rui-Juan Huang; Yi Chen; Xi Fang; Ting Huang; Yu-Feng Zhou; Ya-Hong Liu

BackgroundHaemophilus parasuis (H. parasuis) can invade the body and cause systemic infection under stress conditions. Marbofloxacin has been recommended for the treatment of swine infections. However, few studies have investigated the PK/PD characteristics and PK/PD cutoff (COPD) of this drug against H. parasuis.ResultsMICs of marbofloxacin against 198 H. parasuis isolates were determined. The MIC50 and MIC90 were 2 and 8 mg/L, respectively. An in vitro dynamic PK/PD model was established to study the PK/PD relationship of marbofloxacin against H. parasuis. The PK/PD surrogate markers Cmax/MIC, Cmax/MPC (the maximum concentration divided by MIC or mutant prevention concentration (MPC)) and AUC24h/MIC, AUC24h/MPC (the area under the curve during the first 24 h divided by MIC or MPC) simulated the antimicrobial effect of marbofloxacin successfully with the R2 of 0.9928 and 0.9911, respectively. The target values of 3-log10-unit and 4-log10-unit reduction for AUC24h/MPC were 33 and 42, while the same efficacy for AUC24h/MIC were 88 and 110. The COPD deduced from Monte Carlo simulation (MCS) for marbofloxacin against H. parasuis was 0.5 mg/L. The recommended dose of marbofloxacin against H. parasuis with MIC ≤ 2 mg/L was 16 mg/kg body weight (BW).ConclusionsThe PK/PD surrogate markers AUC24h/MIC, Cmax/MIC and AUC24h/MPC, Cmax/MPC properly described the effects of marbofloxacin. Marbofloxacin can achieve the best efficacy at dosage of 16 mg/kg BW for strains with MIC values ≤ 2 mg/L, therefore, it is obligatory to know the sensitivity of the pathogen and to treat animals as early as possible. The very first COPD provide fundamental data for marbofloxacin breakpoint determination.


PLOS ONE | 2016

In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

Yang Yu; Yu-Feng Zhou; Mei-Ren Chen; Xiao Li; Gui-Lin Qiao; Jian Sun; Xiao-Ping Liao; Ya-Hong Liu

Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml.


Antimicrobial Agents and Chemotherapy | 2017

In Vivo Pharmacokinetic and Pharmacodynamic Profiles of Antofloxacin against Klebsiella pneumoniae in a Neutropenic Murine Lung Infection Model

Yu-Feng Zhou; Meng-Ting Tao; Wei Huo; Xiao-Ping Liao; Jian Sun; Ya-Hong Liu

ABSTRACT Antofloxacin is a novel broad-spectrum fluoroquinolone under development for the treatment of infections caused by a diverse group of bacterial species. We explored the pharmacodynamic (PD) profile and targets of antofloxacin against seven Klebsiella pneumoniae isolates by using a neutropenic murine lung infection model. Plasma and bronchopulmonary pharmacokinetic (PK) studies were conducted at single subcutaneous doses of 2.5, 10, 40, and 160 mg/kg of body weight. Mice were infected intratracheally with K. pneumoniae and treated using 2-fold-increasing total doses of antofloxacin ranging from 2.5 to 160 mg/kg/24 h administered in 1, 2, 3, or 4 doses. The Emax Hill equation was used to model the dose-response data. Antofloxacin could penetrate the lung epithelial lining fluid (ELF) with pharmacokinetics similar to those in plasma with linear elimination half-lives over the dose range. All study strains showed a 3-log10 or greater reduction in bacterial burden and prolonged postantibiotic effects (PAEs) ranging from 3.2 to 5.3 h. Dose fractionation response curves were steep, and the free-drug area under the concentration-time curve over 24 h (AUC0–24)/MIC ratio was the PD index most closely linked to efficacy (R2 = 0.96). The mean free-drug AUC0–24/MIC ratios required to achieve net bacterial stasis, a 1-log10 kill, and a 2-log10 kill for each isolate were 52.6, 89.9, and 164.9, respectively. When integrated with human PK data, these PD targets could provide a framework for further optimization of dosing regimens. This could make antofloxacin an attractive option for the treatment of respiratory tract infections involving K. pneumoniae.


Letters in Applied Microbiology | 2014

Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens.

Dong-Hao Zhao; Yang Yu; Yu-Feng Zhou; Wei Shi; Hui Deng; Ya-Hong Liu

The postantibiotic effect (PAE) and postantibiotic sub‐minimum inhibitory concentration (MIC) effect (PA‐SME) of valnemulin against Staphylococcus aureus were investigated in vitro using a spectrophotometric technique and classic viable count method. A standard curve was constructed by regression analysis of the number of colonies and the corresponding optical density (OD) at 630 nm of the inoculum. After exposure to valnemulin at different concentrations for an hour, the antibiotic was removed by centrifuging and washing. The PA‐SMEs were measured after initial exposure to valnemulin at 4 × the MIC, and then, valnemulin was added to reach corresponding desired concentrations in the resuspended culture. Samples were collected hourly until the culture became turbid. The results were calculated by converting the OD values into the counts of bacteria in accordance with the curve. The MIC of valnemulin against eight strains was identically 0·125 μg ml−1. The mean PAEs were 2·12 h (1 × MIC) and 5·06 h (4 × MIC), and the mean PA‐SMEs were 6·85 h (0·1 × MIC), 9·12 h (0·2 × MIC) and 10·8 h (0·3 × MIC). The results showed that the strains with identical MICs exhibited different PAEs and PA‐SMEs. Valnemulin produced prolonged PAE and PA‐SME periods for Staph. aureus, supporting a longer dosing interval while formulating a daily administration dosage.


Frontiers in Microbiology | 2016

Dose Assessment of Cefquinome by Pharmacokinetic/Pharmacodynamic Modeling in Mouse Model of Staphylococcus aureus Mastitis

Yang Yu; Yu-Feng Zhou; Xiao Li; Mei-Ren Chen; Gui-Lin Qiao; Jian Sun; Xiao-Ping Liao; Ya-Hong Liu

This work aimed to characterize the mammary gland pharmacokinetics of cefquinome after an intramammary administration and integrate pharmacokinetic/pharmacodynamic model. The pharmacokinetic profiles of cefquinome in gland tissue were measured using high performance liquid chromatograph. Therapeutic regimens covered various dosages ranging from 25 to 800 μg/gland and multiple dosing intervals of 8, 12, and 24 h. The in vivo bacterial killing activity elevated when dosage increased or when dosing intervals were shortened. The best antibacterial effect was demonstrated by a mean 1.5 log10CFU/gland visible count reduction. On the other hand, the results showed that the percentage of time duration of drug concentration exceeding the MIC during a dose interval (%T > MIC) was generally 100% because of the influence of drug distribution caused by the blood-milk barrier. Therefore, pharmacokinetic/pharmacodynamic parameter of the ratio of area under the concentration-time curve over 24 h to the MIC (AUC0-24/MIC) was used to describe the efficacy of cefquinome instead of %T > MIC. When the magnitude of AUC0-24/MIC exceeding 16571.55 h⋅mL/g, considerable activity of about 1.5 log10CFU/g gland bacterial count reduction was observed in vivo. Based on the Monte Carlo simulation, the clinical recommended regimen of three infusions of 75 mg per quarter every 12 h can achieve a 76.67% cure rate in clinical treatment of bovine mastitis caused by Staphylococcus aureus infection.


Frontiers in Microbiology | 2016

Pharmacokinetic/Pharmacodynamic Correlation of Cefquinome Against Experimental Catheter-Associated Biofilm Infection Due to Staphylococcus aureus

Yu-Feng Zhou; Wei Shi; Yang Yu; Meng-Ting Tao; Yan Q. Xiong; Jian Sun; Ya-Hong Liu

Biofilm formations play an important role in Staphylococcus aureus pathogenesis and contribute to antibiotic treatment failures in biofilm-associated infections. The aim of this study was to evaluate the pharmacokinetic/pharmacodynamic (PK/PD) profiles of cefquinome against an experimental catheter-related biofilm model due to S. aureus, including three clinical isolates and one non-clinical isolate. The minimal inhibitory concentration (MIC), minimal biofilm inhibitory concentration (MBIC), biofilm bactericidal concentration (BBC), minimal biofilm eradication concentration (MBEC) and biofilm prevention concentration (BPC) and in vitro time-kill curves of cefquinome were studied in both planktonic and biofilm cells of study S. aureus strains. The in vivo post-antibiotic effects (PAEs), PK profiles and efficacy of cefquinome were performed in the catheter-related biofilm infection model in murine. A sigmoid Emax model was utilized to determine the PK/PD index that best described the dose-response profiles in the model. The MICs and MBICs of cefquinome for the four S. aureus strains were 0.5 and 16 μg/mL, respectively. The BBCs (32–64 μg/mL) and MBECs (64–256 μg/mL) of these study strains were much higher than their corresponding BPC values (1–2 μg/mL). Cefquinome showed time-dependent killing both on planktonic and biofilm cells, but produced much shorter PAEs in biofilm infections. The best-correlated PK/PD parameters of cefquinome for planktonic and biofilm cells were the duration of time that the free drug level exceeded the MIC (fT > MIC, R2 = 96.2%) and the MBIC (fT > MBIC, R2 = 94.7%), respectively. In addition, the AUC24h/MBIC of cefquinome also significantly correlated with the anti-biofilm outcome in this model (R2 = 93.1%). The values of AUC24h/MBIC for biofilm-static and 1-log10-unit biofilm-cidal activity were 22.8 and 35.6 h; respectively. These results indicate that the PK/PD profiles of cefquinome could be used as valuable guidance for effective dosing regimens treating S. aureus biofilm-related infections.


The Journal of Infectious Diseases | 2018

Role of Purine Biosynthesis in Persistent Methicillin-Resistant Staphylococcus aureus Infection

Liang Li; Wessam Abdelhady; Niles P. Donegan; Kati Seidl; Ambrose L. Cheung; Yu-Feng Zhou; Michael R. Yeaman; Arnold S. Bayer; Yan Q. Xiong

Persistent methicillin-resistant Staphylococcus aureus (MRSA) bacteremia (PB) represents an important subset of S. aureus endovascular infections. In this study, we investigated potential genetic mechanisms underlying the persistent outcomes. Compared with resolving bacteremia (RB) isolates (defined as isolates associated with negative results of blood cultures 2-4 days after initiation of therapy), PB strains (defined as isolates associated with positive results of blood cultures ≥7 days after initiation of therapy) had significantly earlier onset activation of key virulence regulons and structural genes (eg, sigB, sarA, sae, and cap5), higher expression of purine biosynthesis genes (eg, purF), and faster growth rates, with earlier entrance into stationary phase. Importantly, an isogenic strain set featuring a wild-type MRSA isolate, a purF mutant strain, and a purF-complemented strain and use of strategic purine biosynthesis inhibitors implicated a causal relationship between purine biosynthesis and the in vivo persistent outcomes. These observations suggest that purine biosynthesis plays a key role in the outcome of PB and may represent a new target for enhanced efficacy in treating life-threatening MRSA infections.

Collaboration


Dive into the Yu-Feng Zhou's collaboration.

Top Co-Authors

Avatar

Ya-Hong Liu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Jian Sun

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao-Ping Liao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yang Yu

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Meng-Ting Tao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Wei Shi

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dong-Hao Zhao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xia Xiao

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiao Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Gui-Lin Qiao

Defense Threat Reduction Agency

View shared research outputs
Researchain Logo
Decentralizing Knowledge