Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Fukuda is active.

Publication


Featured researches published by Yu Fukuda.


Nature | 2006

Identification of a mammalian mitochondrial porphyrin transporter

Partha Krishnamurthy; Guoqing Du; Yu Fukuda; Daxi Sun; Janardhan Sampath; Kelly E. Mercer; Junfeng Wang; Beatriz Sosa-Pineda; K. Gopal Murti; John D. Schuetz

The movement of anionic porphyrins (for example, haem) across intracellular membranes is crucial to many biological processes, but their mitochondrial translocation and coordination with haem biosynthesis is not understood. Transport of porphyrins into isolated mitochondria is energy-dependent, as expected for the movement of anions into a negatively charged environment. ATP-binding cassette transporters actively facilitate the transmembrane movement of substances. We found that the mitochondrial ATP-binding cassette transporter ABCB6 is upregulated (messenger RNA and protein in human and mouse cells) by elevation of cellular porphyrins and postulated that ABCB6 has a function in porphyrin transport. We also predicted that ABCB6 is functionally linked to haem biosynthesis, because its mRNA is found in both human bone marrow and CD71+ early erythroid cells (by database searching), and because our results show that ABCB6 is highly expressed in human fetal liver, and Abcb6 in mouse embryonic liver. Here we demonstrate that ABCB6 is uniquely located in the outer mitochondrial membrane and is required for mitochondrial porphyrin uptake. After ABCB6 is upregulated in response to increased intracellular porphyrin, mitochondrial porphyrin uptake activates de novo porphyrin biosynthesis. This process is blocked when the Abcb6 gene is silenced. Our results challenge previous assumptions about the intracellular movement of porphyrins and the factors controlling haem biosynthesis.


Biochemical Pharmacology | 2012

ABC transporters and their role in nucleoside and nucleotide drug resistance.

Yu Fukuda; John D. Schuetz

ATP-binding cassette (ABC) transporters confer drug resistance against a wide range of chemotherapeutic agents, including nucleoside and nucleotide based drugs. While nucleoside based drugs have been used for many years in the treatment of solid and hematological malignancies as well as viral and autoimmune diseases, the potential contribution of ABC transporters has only recently been recognized. This neglect is likely because activation of nucleoside derivatives require an initial carrier-mediated uptake step followed by phosphorylation by nucleoside kinases, and defects in uptake or kinase activation were considered the primary mechanisms of nucleoside drug resistance. However, recent studies demonstrate that members of the ABCC transporter subfamily reduce the intracellular concentration of monophosphorylated nucleoside drugs. In addition to the ABCC subfamily members, ABCG2 has been shown to transport nucleoside drugs and nucleoside-monophosphate derivatives of clinically relevant nucleoside drugs such as cytarabine, cladribine, and clofarabine to name a few. This review will discuss ABC transporters and how they interact with other processes affecting the efficacy of nucleoside based drugs.


Journal of Biological Chemistry | 2012

ATP-dependent Mitochondrial Porphyrin Importer ABCB6 Protects against Phenylhydrazine Toxicity

Dagny Ulrich; John R. Lynch; Yao Wang; Yu Fukuda; Deepa Nachagari; Guoqing Du; Daxi Sun; Yiping Fan; Lyudmila Tsurkan; Philip M. Potter; Jerold E. Rehg; John D. Schuetz

Background: The role of the mitochondrial ABC transporter, Abcb6, in vivo is unknown. Results: Abcb6-null mice are incapable of ATP-dependent import of mitochondrial porphyrins. Despite compensatory changes in the porphyrin pathway, Abcb6-null mice are less viable after a porphyrin-inducing stress. Conclusion: Abcb6 absence abolished ATP-dependent mitochondrial porphyrin uptake and deregulated porphyrin pathway genes. Significance: Disrupted Abcb6 function may produce porphyria after certain stresses. Abcb6 is a mammalian mitochondrial ATP-binding cassette (ABC) transporter that regulates de novo porphyrin synthesis. In previous studies, haploinsufficient (Abcb6+/−) embryonic stem cells showed impaired porphyrin synthesis. Unexpectedly, Abcb6−/− mice derived from these stem cells appeared phenotypically normal. We hypothesized that other ATP-dependent and/or -independent mechanisms conserve porphyrins. Here, we demonstrate that Abcb6−/− mice lack mitochondrial ATP-driven import of coproporphyrin III. Gene expression analysis revealed that loss of Abcb6 results in up-regulation of compensatory porphyrin and iron pathways, associated with elevated protoporphyrin IX (PPIX). Phenylhydrazine-induced stress caused higher mortality in Abcb6−/− mice, possibly because of sustained elevation of PPIX and an inability to convert PPIX to heme despite elevated ferrochelatase levels. Therefore, Abcb6 is the sole ATP-dependent porphyrin importer, and loss of Abcb6 produces up-regulation of heme and iron pathways necessary for normal development. However, under extreme demand for porphyrins (e.g. phenylhydrazine stress), these adaptations appear inadequate, which suggests that under these conditions Abcb6 is important for optimal survival.


Cancer Research | 2009

Cell survival under stress is enhanced by a mitochondrial ATP-binding cassette transporter that regulates hemoproteins

John H. Lynch; Yu Fukuda; Partha Krishnamurthy; Guoqing Du; John D. Schuetz

The ATP-binding cassette (ABC) transporter ABCB6 localizes to the mitochondria, where it imports porphyrins and up-regulates de novo porphyrin synthesis. If ABCB6 also increases the intracellular heme concentration, it may broadly affect the regulation and physiology of cellular hemoproteins. We tested whether the ability of ABCB6 to accelerate de novo porphyrin biosynthesis alters mitochondrial and extramitochondrial heme levels. ABCB6 overexpression increased the quantity of cytosolic heme but did not affect mitochondrial heme levels. We then tested whether the increased extramitochondrial heme would increase the concentration and/or activity of cellular hemoproteins (hemoglobin, catalase, and cytochrome c oxidase). ABCB6 overexpression increased the activity and quantity of hemoproteins found in several subcellular compartments, and reduction of ABCB6 function (by small interfering RNA or knockout) reversed these findings. In complementary studies, suppression of ABCB6 expression sensitized cells to stress induced by peroxide and cyanide, whereas overexpression of ABCB6 protected against both stressors. Our findings show that the ability of ABCB6 to increase cytosolic heme levels produces phenotypic changes in hemoproteins that protect cells from certain stresses. Collectively, these findings have implications for the health and survival of both normal and abnormal cells, which rely on heme for multiple cellular processes.


Journal of Biological Chemistry | 2011

Conserved intramolecular disulfide bond is critical to trafficking and fate of ATP-binding cassette (ABC) transporters ABCB6 and sulfonylurea receptor 1 (SUR1)/ABCC8.

Yu Fukuda; Lydia Aguilar-Bryan; Martine Vaxillaire; Aurélie Dechaume; Yao Wang; Michael Dean; Karobi Moitra; Joseph Bryan; John D. Schuetz

The ATP-binding cassette (ABC) transporter ABCB6 is a mitochondrial porphyrin transporter that activates porphyrin biosynthesis. ABCB6 lacks a canonical mitochondrial targeting sequence but reportedly traffics to other cellular compartments such as the plasma membrane. How ABCB6 reaches these destinations is unknown. In this study, we show that endogenous ABCB6 is glycosylated in multiple cell types, indicating trafficking through the endoplasmic reticulum (ER), and has only one atypical site for glycosylation (NXC) in its amino terminus. ABCB6 remained glycosylated when the highly conserved cysteine (Cys-8) was substituted with serine to make a consensus site, NXS. However, this substitution blocked ER exit and produced ABCB6 degradation, which was mostly reversed by the proteasomal inhibitor MG132. The amino terminus of ABCB6 has an additional highly conserved ER luminal cysteine (Cys-26). When Cys-26 was mutated alone or in combination with Cys-8, it also resulted in instability and ER retention. Further analysis revealed that these two cysteines form a disulfide bond. We discovered that other ABC transporters with an amino terminus in the ER had similarly configured conserved cysteines. This analysis led to the discovery of a disease-causing mutation in the sulfonylurea receptor 1 (SUR1)/ABCC8 from a patient with hyperinsulinemic hypoglycemia. The mutant allele only contains a mutation in a conserved amino-terminal cysteine, producing SUR1 that fails to reach the cell surface. These results suggest that for ABC transporters the propensity to form a disulfide bond in the ER defines a unique checkpoint that determines whether a protein is ER-retained.


Molecular Pharmacology | 2013

Human Immunodeficiency Virus Protease Inhibitors Interact with ATP Binding Cassette Transporter 4/Multidrug Resistance Protein 4: A Basis for Unanticipated Enhanced Cytotoxicity

Yu Fukuda; Kazumasa Takenaka; Alex Sparreboom; Satish Cheepala; Chung-Pu Wu; Sean Ekins; Suresh V. Ambudkar; John D. Schuetz

Human immunodeficiency virus (HIV) pharmacotherapy, by combining different drug classes such as nucleoside analogs and HIV protease inhibitors (PIs), has increased HIV-patient life expectancy. Consequently, among these patients, an increase in non-HIV–associated cancers has produced a patient cohort requiring both HIV and cancer chemotherapy. We hypothesized that multidrug resistance protein 4/ATP binding cassette transporter 4 (MRP4/ABCC4), a widely expressed transporter of nucleoside-based antiviral medications as well as cancer therapeutics might interact with PIs. Among the PIs evaluated (nelfinavir, ritonavir, amprenavir, saquinavir, and indinavir), only nelfinavir both effectively stimulated MRP4 ATPase activity and inhibited substrate-stimulated ATPase activity. Saos2 and human embryonic kidney 293 cells engineered to overexpress MRP4 were then used to assess transport and cytotoxicity. MRP4 expression reduced intracellular accumulation of nelfinavir and consequently conferred survival advantage to nelfinavir cytotoxicity. Nelfinavir blocked Mrp4-mediated export, which is consistent with its ability to increase the sensitivity of MRP4-expressing cells to methotrexate. In contrast, targeted inactivation of Abcc4/Mrp4 in mouse cells specifically enhanced nelfinavir and 9-(2-phosphonylmethoxyethyl) adenine cytotoxicity. These results suggest that nelfinavir is both an inhibitor and substrate of MRP4. Because nelfinavir is a new MRP4/ABCC4 substrate, we developed a MRP4/ABCC4 pharmacophore model, which showed that the nelfinavir binding site is shared with chemotherapeutic substrates such as adefovir and methotrexate. Our studies reveal, for the first time, that nelfinavir, a potent and cytotoxic PI, is both a substrate and inhibitor of MRP4. These findings suggest that HIV-infected cancer patients receiving nelfinavir might experience both enhanced antitumor efficacy and unexpected adverse toxicity given the role of MRP4/ABCC4 in exporting nucleoside-based antiretroviral medications and cancer chemotherapeutics.


Blood | 2015

The ABCC4 membrane transporter modulates platelet aggregation

Satish Cheepala; Aaron Pitre; Yu Fukuda; Kazumasa Takenaka; Yuanyuan Zhang; Yao Wang; Sharon Frase; Tamara I. Pestina; T. K. Gartner; Carl W. Jackson; John D. Schuetz

Controlling the activation of platelets is a key strategy to mitigate cardiovascular disease. Previous studies have suggested that the ATP-binding cassette (ABC) transporter, ABCC4, functions in platelet-dense granules. Using plasma membrane biotinylation and super-resolution microscopy, we demonstrate that ABCC4 is primarily expressed on the plasma membrane of both mouse and human platelets. Platelets lacking ABCC4 have unchanged dense-granule function, number, and volume, but harbor a selective impairment in collagen-induced aggregation. Accordingly, Abcc4 knockout (KO) platelet attachment to a collagen substratum was also faulty and associated with elevated intracellular cyclic AMP (cAMP) and reduced plasma membrane localization of the major collagen receptor, GPVI. In the ferric-chloride vasculature injury model, Abcc4 KO mice exhibited markedly impaired thrombus formation. The attenuation of platelet aggregation by the phosphodiesterase inhibitor EHNA (a non-ABCC4 substrate), when combined with Abcc4 deficiency, illustrated a crucial functional interaction between phosphodiesterases and ABCC4. This was extended in vivo where EHNA dramatically prolonged the bleeding time, but only in Abcc4 KO mice. Further, we demonstrated in human platelets that ABCC4 inhibition, when coupled with phosphodiesterase inhibition, strongly impaired platelet aggregation. These findings have important clinical implications because they directly highlight an important relationship between ABCC4 transporter function and phosphodiesterases in accounting for the cAMP-directed activity of antithrombotic agents.


Cancer Research | 2015

ABCG2 Transporter Expression Impacts Group 3 Medulloblastoma Response to Chemotherapy

Marie Morfouace; Satish Cheepala; Sadhana Jackson; Yu Fukuda; Yogesh T. Patel; Soghra Fatima; Daisuke Kawauchi; Anang A. Shelat; Clinton F. Stewart; Brian P. Sorrentino; John D. Schuetz; Martine F. Roussel

While a small number of plasma membrane ABC transporters can export chemotherapeutic drugs and confer drug resistance, it is unknown whether these transporters are expressed or functional in less therapeutically tractable cancers such as Group 3 (G3) medulloblastoma. Herein we show that among this class of drug transporters, only ABCG2 was expressed at highly increased levels in human G3 medulloblastoma and a mouse model of this disease. In the mouse model, Abcg2 protein was expressed at the plasma membrane where it functioned as expected on the basis of export of prototypical substrates. By screening ABC substrates against mouse G3 medulloblastoma tumorspheres in vitro, we found that Abcg2 inhibition could potentiate responses to the clinically used drug topotecan, producing a more than 9-fold suppression of cell proliferation. Extended studies in vivo in this model confirmed that Abcg2 inhibition was sufficient to enhance antiproliferative responses to topotecan, producing a significant survival advantage compared with subjects treated with topotecan alone. Our findings offer a preclinical proof of concept for blockade of ABCG2 transporter activity as a strategy to empower chemotherapeutic responses in G3 medulloblastoma.


Advances in Cancer Research | 2015

Leukemia and ABC transporters.

Yu Fukuda; Shangli Lian; John D. Schuetz

Acute myeloid leukemia (AML) is a heterogeneous disease caused by aberrant proliferation and/or differentiation of myeloid progenitors. However, only ~65% of AML patients respond to induction chemotherapy and the overall survival rate for AML remains low (~24% for 5-year survival). The conventional view suggests that ATP-binding cassette (ABC) transporters contribute to treatment failure due to their drug-effluxing capabilities. This might be overly simplistic. Some ABC transporters export endogenous substrates that have defined roles in normal hematopoietic progenitors. It is conceivable that these substances also provide an advantage to leukemic progenitors. This review will highlight how certain endogenous substrates impact normal hematopoietic cells and suggest that ABC transporters facilitate export of these substances to affect both normal hematopoietic and leukemic progenitors. For example, the ability to export certain endogenous ligands may facilitate leukemogenesis by modifying leukemic progenitor cell proliferation or survival. If so, the addition of ABC transporter inhibitors to traditional chemotherapy might improve therapeutic efficacy by not just increasing intracellular drug accumulation but also blocking the beneficial effects ABC transporter ligands have on cell survival.


Nature Communications | 2016

The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6

Yu Fukuda; Pak Leng Cheong; John Lynch; Cheryl Brighton; Sharon Frase; Vasileios Kargas; Evadnie Rampersaud; Yao Wang; Vijay G. Sankaran; Bing Yu; Paul A. Ney; Mitchell J. Weiss; Peter Vogel; Peter J. Bond; Robert C. Ford; Ronald J. Trent; John D. Schuetz

Hereditary porphyrias are caused by mutations in genes that encode haem biosynthetic enzymes with resultant buildup of cytotoxic metabolic porphyrin intermediates. A long-standing open question is why the same causal porphyria mutations exhibit widely variable penetrance and expressivity in different individuals. Here we show that severely affected porphyria patients harbour variant alleles in the ABCB6 gene, also known as Lan, which encodes an ATP-binding cassette (ABC) transporter. Plasma membrane ABCB6 exports a variety of disease-related porphyrins. Functional studies show that most of these ABCB6 variants are expressed poorly and/or have impaired function. Accordingly, homozygous disruption of the Abcb6 gene in mice exacerbates porphyria phenotypes in the Fechm1Pas mouse model, as evidenced by increased porphyrin accumulation, and marked liver injury. Collectively, these studies support ABCB6 role as a genetic modifier of porphyria and suggest that porphyrin-inducing drugs may produce excessive toxicities in individuals with the rare Lan(−) blood type.

Collaboration


Dive into the Yu Fukuda's collaboration.

Top Co-Authors

Avatar

John D. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yao Wang

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Yiping Fan

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Brian P. Sorrentino

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Guoqing Du

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Martine F. Roussel

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Satish Cheepala

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Aaron Pitre

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Ayten Kandilci

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Bruce Fanshawe

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge