Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Jen Lu is active.

Publication


Featured researches published by Yu-Jen Lu.


Colloids and Surfaces B: Biointerfaces | 2012

Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes.

Yu-Jen Lu; Kuo-Chen Wei; Chen-Chi M. Ma; Shin-Yi Yang; Jyh-Ping Chen

By combining the advantage of multi-walled carbon nanotubes (MWCNTs) and iron oxide magnetic nanoparticles (MNs), we develop a magnetic dual-targeted nanocarrier for drug delivery. MWCNTs were functionalized with poly(acrylic acid) through free radical polymerization, decorated with MNs, conjugated with a targeting ligand folic acid (FA), for loading of an anti-cancer drug doxorubicin (DOX). The proposed methodology provides dual targeted delivery of the anti-cancer drug to cancer cells under the guidance of a magnetic field and through ligand-receptor interactions. The chemico-physical properties of the nanocarrier were characterized, in addition to its drug loading efficiency and drug releasing characteristics. Doxorubicin could be loaded to MWCNTs with high efficiency via π-π stacking and hydrogen bonding and showed enhanced cytotoxicity toward U87 human glioblastoma cells compared with free DOX. From transmission electron microscopy and confocal laser scanning microscopy, we confirmed that DOX-FA-MN-MWCNT could be efficiently taken up by U87 cells with subsequent intracellular release of DOX, followed by transport of DOX into the nucleus with the nanocarrier left in the cytoplasm. These properties make the magnetic nanocarrier a potential candidate for targeted delivery of DOX for cancer treatment.


PLOS ONE | 2013

Focused Ultrasound-Induced Blood–Brain Barrier Opening to Enhance Temozolomide Delivery for Glioblastoma Treatment: A Preclinical Study

Kuo-Chen Wei; Po-Chun Chu; Hay-Yan J. Wang; Chiung-Yin Huang; Pin-Yuan Chen; Hong Chieh Tsai; Yu-Jen Lu; Pei-Yun Lee; I-Chou Tseng; Li-Ying Feng; Peng-Wei Hsu; Tzu-Chen Yen; Hao-Li Liu

The purpose of this study is to assess the preclinical therapeutic efficacy of magnetic resonance imaging (MRI)-monitored focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption to enhance Temozolomide (TMZ) delivery for improving Glioblastoma Multiforme (GBM) treatment. MRI-monitored FUS with microbubbles was used to transcranially disrupt the BBB in brains of Fisher rats implanted with 9L glioma cells. FUS-BBB opening was spectrophotometrically determined by leakage of dyes into the brain, and TMZ was quantitated in cerebrospinal fluid (CSF) and plasma by LC-MS\MS. The effects of treatment on tumor progression (by MRI), animal survival and brain tissue histology were investigated. Results demonstrated that FUS-BBB opening increased the local accumulation of dyes in brain parenchyma by 3.8-/2.1-fold in normal/tumor tissues. Compared to TMZ alone, combined FUS treatment increased the TMZ CSF/plasma ratio from 22.7% to 38.6%, reduced the 7-day tumor progression ratio from 24.03 to 5.06, and extended the median survival from 20 to 23 days. In conclusion, this study provided preclinical evidence that FUS BBB-opening increased the local concentration of TMZ to improve the control of tumor progression and animal survival, suggesting its clinical potential for improving current brain tumor treatment.


Neuro-oncology | 2010

Novel magnetic/ultrasound focusing system enhances nanoparticle drug delivery for glioma treatment

Pin-Yuan Chen; Hao-Li Liu; Mu-Yi Hua; Hung-Wei Yang; Chiung-Yin Huang; Po-Chun Chu; Lee-Ang Lyu; I-Chou Tseng; Li-Ying Feng; Hong-Chieh Tsai; Shu-Mei Chen; Yu-Jen Lu; Jiun-Jie Wang; Tzu-Chen Yen; Yunn-Hwa Ma; Tony Wu; Jyh-Ping Chen; Jih Ing Chuang; Chuen Hsueh; Kuo-Chen Wei

Malignant glioma is a common and severe primary brain tumor with a high recurrence rate and an extremely high mortality rate within 2 years of diagnosis, even when surgical, radiological, and chemotherapeutic interventions are applied. Intravenously administered drugs have limited use because of their adverse systemic effects and poor blood-brain barrier penetration. Here, we combine 2 methods to increase drug delivery to brain tumors. Focused ultrasound transiently permeabilizes the blood-brain barrier, increasing passive diffusion. Subsequent application of an external magnetic field then actively enhances localization of a chemotherapeutic agent immobilized on a novel magnetic nanoparticle. Combining these techniques significantly improved the delivery of 1,3-bis(2-chloroethyl)-1-nitrosourea to rodent gliomas. Furthermore, the physicochemical properties of the nanoparticles allowed their delivery to be monitored by magnetic resonance imaging (MRI). The resulting suppression of tumor progression without damaging the normal regions of the brain was verified by MRI and histological examination. This noninvasive, reversible technique promises to provide a more effective and tolerable means of tumor treatment, with lower therapeutic doses and concurrent clinical monitoring.


Biomaterials | 2013

Magnetic gold-nanorod/ PNIPAAmMA nanoparticles for dual magnetic resonance and photoacoustic imaging and targeted photothermal therapy

Hung-Wei Yang; Hao-Li Liu; Meng-Lin Li; I-Wen Hsi; Chih-Tai Fan; Chiung-Yin Huang; Yu-Jen Lu; Mu-Yi Hua; Hsin-Yi Chou; Jiunn-Woei Liaw; Chen-Chi M. Ma; Kuo-Chen Wei

Nanomedicine can provide a multi-functional platform for image-guided diagnosis and treatment of cancer. Although gold nanorods (GNRs) have been developed for photoacoustic (PA) imaging and near infra-red (NIR) photothermal applications, their efficiency has remained limited by low thermal stability. Here we present the synthesis, characterization, and functional evaluation of non-cytotoxic magnetic polymer-modified gold nanorods (MPGNRs), designed to act as dual magnetic resonance imaging (MRI) and PA imaging contrast agents. In addition, their high magnetization allowed MPGNRs to be actively localized and concentrated by targeting with an external magnet. Finally, MPGNRs significantly enhanced the NIR-laser-induced photothermal effect due to their increased thermal stability. MPGNRs thus provide a promising new theranostic platform for cancer diagnosis and treatment by combining dual MR/PA imaging with highly effective targeted photothermal therapy.


Biomaterials | 2014

Gadolinium-functionalized nanographene oxide for combined drug and microRNA delivery and magnetic resonance imaging.

Hung-Wei Yang; Chiung-Yin Huang; Chih-Wen Lin; Hao-Li Liu; Chia-Wen Huang; Shih-Sheng Liao; Pin-Yuan Chen; Yu-Jen Lu; Kuo-Chen Wei; Chen-Chi M. Ma

The delivery of anti-cancer therapeutics to tumors at clinically effective concentrations, while avoiding nonspecific toxicity, remains a major challenge for cancer treatment. Here we present nanoparticles of poly(amidoamine) dendrimer-grafted gadolinium-functionalized nanographene oxide (Gd-NGO) as effective carriers to deliver both chemotherapeutic drugs and highly specific gene-targeting agents such as microRNAs (miRNAs) to cancer cells. The positively charged surface of Gd-NGO was capable of simultaneous adsorption of the anti-cancer drug epirubicin (EPI) and interaction with negatively charged Let-7g miRNA. Using human glioblastoma (U87) cells as a model, we found that this conjugate of Let-7g and EPI (Gd-NGO/Let-7g/EPI) not only exhibited considerably higher transfection efficiency, but also induced better inhibition of cancer cell growth than Gd-NGO/Let-7g or Gd-NGO/EPI. The concentration of Gd-NGO/Let-7g/EPI required for 50% inhibition of cellular growth (IC50) was significantly reduced (to the equivalent of 1.3 μg/mL EPI) compared to Gd-NGO/EPI (3.4 μg/mL EPI). In addition, Gd-NGO/Let-7g/EPI could be used as a contrast agent for magnetic resonance imaging to identify the location and extent of blood-brain barrier opening and quantitate drug delivery to tumor tissues. These results suggest that Gd-NGO/Let-7g/EPI may be a promising non-viral vector for chemogene therapy and molecular imaging diagnosis in future clinical applications.


Biomaterials | 2013

EGRF conjugated PEGylated nanographene oxide for targeted chemotherapy and photothermal therapy.

Hung-Wei Yang; Yu-Jen Lu; Kun-Ju Lin; Sheng-Chieh Hsu; Chiung-Yin Huang; Shu-Han She; Hao-Li Liu; Chih-Wen Lin; Min-Cong Xiao; Shiaw-Pyng Wey; Pin-Yuan Chen; Tzu-Chen Yen; Kuo-Chen Wei; Chen-Chi M. Ma

Low accumulation of chemotherapeutic agent in tumor tissue and multidrug resistance (MDR) present a major obstacle to curing cancer treatment. Therefore, how to combine several therapeutics in one system is a key issue to overcome the problem. Here, we demonstrate epidermal growth factor receptor (EGFR) antibody-conjugated PEGylated nanographene oxide (PEG-NGO) to carry epirubicin (EPI) for tumor targeting and triple-therapeutics (growth signal blocking, chemotherapy, photothermal therapy) in tumor treatment. This synergistic targeted treatment simultaneously enhances the local drug concentration (6.3-fold) and performs the ultra-efficient tumor suppression to significantly prolong the mice survival (over the course of 50 days).


Advanced Materials | 2013

Non‐Invasive Synergistic Treatment of Brain Tumors by Targeted Chemotherapeutic Delivery and Amplified Focused Ultrasound‐Hyperthermia Using Magnetic Nanographene Oxide

Hung-Wei Yang; Mu-Yi Hua; Tsong-Long Hwang; Kun-Ju Lin; Chiung-Yin Huang; Rung-Ywan Tsai; Chen-Chi M. Ma; Po-Hung Hsu; Shiaw-Pyng Wey; Peng-Wei Hsu; Pin-Yuan Chen; Yin-Cheng Huang; Yu-Jen Lu; Tzu-Chen Yen; Li-Ying Feng; Chih-Wen Lin; Hao-Li Liu; Kuo-Chen Wei

The combination of chemo-thermal therapy is the best strategy to ablate tumors, but how to heat deep tumor tissues effectively without side-damage is a challenge. Here, a systemically delivered nanocarrier is designed with multiple advantages, including superior heat absorption, highly efficient hyperthermia, high drug capacity, specific targeting ability, and molecular imaging, to achieve both high antitumor efficacy and effective amplification of hyperthermia with minimal side effects.


International Journal of Nanomedicine | 2012

Targeted delivery of tissue plasminogen activator by binding to silica-coated magnetic nanoparticle.

Jyh-Ping Chen; Pei-Ching Yang; Yunn-Hwa Ma; S Tu; Yu-Jen Lu

Background and methods Silica-coated magnetic nanoparticle (SiO2-MNP) prepared by the sol-gel method was studied as a nanocarrier for targeted delivery of tissue plasminogen activator (tPA). The nanocarrier consists of a superparamagnetic iron oxide core and an SiO2 shell and is characterized by transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, superconducting quantum interference device, and thermogravimetric analysis. An amine-terminated surface silanizing agent (3-aminopropyltrimethoxysilane) was used to functionalize the SiO2 surface, which provides abundant –NH2 functional groups for conjugating with tPA. Results The optimum drug loading is reached when 0.5 mg/mL tPA is conjugated with 5 mg SiO2-MNP where 94% tPA is attached to the carrier with 86% retention of amidolytic activity and full retention of fibrinolytic activity. In vitro biocompatibility determined by lactate dehydrogenase release and cell proliferation indicated that SiO2-MNP does not elicit cytotoxicity. Hematological analysis of blood samples withdrawn from mice after venous administration indicates that tPA-conjugated SiO2-MNP (SiO2-MNP-tPA) did not alter blood component concentrations. After conjugating to SiO2-MNP, tPA showed enhanced storage stability in buffer and operation stability in whole blood up to 9.5 and 2.8-fold, respectively. Effective thrombolysis with SiO2-MNP-tPA under magnetic guidance is demonstrated in an ex vivo thrombolysis model where 34% and 40% reductions in blood clot lysis time were observed compared with runs without magnetic targeting and with free tPA, respectively, using the same drug dosage. Enhanced penetration of SiO2-MNP-tPA into blood clots under magnetic guidance was confirmed from microcomputed tomography analysis. Conclusion Biocompatible SiO2-MNP developed in this study will be useful as a magnetic targeting drug carrier to improve clinical thrombolytic therapy.


Biosensors and Bioelectronics | 2015

A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis.

Chih-Wen Lin; Kuo-Chen Wei; Shih-Sheng Liao; Chiung-Yin Huang; Chia-Liang Sun; Pei-Jung Wu; Yu-Jen Lu; Hung-Wei Yang; Chen-Chi M. Ma

Early cancer diagnosis is critical for the prevention of metastasis. However, simple and efficient methods are needed to improve the diagnosis and evaluation of cancer. Here, we propose a reusable biosensor based on a magnetic graphene oxide (MGO)-modified Au electrode to detect vascular endothelial growth factor (VEGF) in human plasma for cancer diagnosis. In this biosensor, Avastin is used as the specific biorecognition element, and MGO is used as the carrier for Avastin loading. The use of MGO enables rapid purification due to its magnetic properties, which prevents the loss of bioactivity. Moreover, the biosensor can be constructed quickly, without requiring a drying process, which is convenient for proceeding to detection. Our reusable biosensor provides the appropriate sensitivity for clinical diagnostics and has a wide range of linear detection, from 31.25-2000 pg mL(-1), compared to ELISA analysis. In addition, in experiments with 100% serum from clinical samples, readouts from the sensor and an ELISA for VEGF showed good correlation within the limits of the ELISA kit. The relative standard deviation (RSD) of the change in current (ΔC) for reproducibility of the Au biosensor was 2.36% (n=50), indicating that it can be reused with high reproducibility. Furthermore, the advantages of the Avastin-MGO-modified biosensor for VEGF detection are that it provides an efficient detection strategy that not only improves the detection ability but also reduces the cost and decreases the response time by 10-fold, indicating its potential as a diagnosis product.


Analytical Chemistry | 2015

Graphene Nanoribbon-Supported PtPd Concave Nanocubes for Electrochemical Detection of TNT with High Sensitivity and Selectivity

Ruizhong Zhang; Chia-Liang Sun; Yu-Jen Lu; Wei Chen

In this work, PtPd concave nanocubes anchored on graphene nanoribbons (PtPd-rGONRs) were successfully fabricated through a hydrothermal process. The structural characterizations confirmed that PtPd concave cubes with an average size of around 11 nm have been successfully synthesized and they are uniformly assembled on the surface of rGONRs. The electrochemical measurements demonstrated that the PtPd-rGONRs composite-modified glassy carbon electrode (GCE) shows much enhanced current signals for TNT reduction, which is 4 and 12-fold higher than rGONRs and bare glassy carbon electrode, respectively. The PtPd-rGONRs exhibited a wide linear range for TNT detection from 0.01 to 3 ppm with the sensing limit of 0.8 ppb. Moreover, the PtPd-rGONRs showed excellent detection stability for the determination of TNT. Most importantly, the PtPd-rGONRs-based electrochemical detection platform can be successfully applied to TNT detection in tap water and real lake water samples. The present study indicates that graphene nanoribbon-supported nanocrystals are promising in designing high performance electrochemical sensors for explosives detection.

Collaboration


Dive into the Yu-Jen Lu's collaboration.

Top Co-Authors

Avatar

Kuo-Chen Wei

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiung-Yin Huang

Memorial Hospital of South Bend

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chen-Chi M. Ma

National Tsing Hua University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chih-Wen Lin

National Tsing Hua University

View shared research outputs
Researchain Logo
Decentralizing Knowledge