Yu-Jui Huang
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Jui Huang.
Siam Journal on Control and Optimization | 2013
Erhan Bayraktar; Yu-Jui Huang
We consider a zero-sum stochastic differential controller-and-stopper game in which the state process is a controlled diffusion evolving in a multi-dimensional Euclidean space. In this game, the controller affects both the drift and the volatility terms of the state process. Under appropriate conditions, we show that the game has a value and the value function is the unique viscosity solution to an obstacle problem for a Hamilton-Jacobi-Bellman equation.
Siam Journal on Financial Mathematics | 2015
Erhan Bayraktar; Yu-Jui Huang; Zhou Zhou
We consider as given a discrete time financial market with a risky asset and options written on that asset and determine both the sub- and super-hedging prices of an American option in the model independent framework of ArXiv:1305.6008. We obtain the duality of results for the sub- and super-hedging prices. For the sub-hedging prices we discuss whether the sup and inf in the dual representation can be exchanged (a counter example shows that this is not true in general). For the super-hedging prices we discuss several alternative definitions and argue why our choice is more reasonable. Then assuming that the path space is compact, we construct a discretization of the path space and demonstrate the convergence of the hedging prices at the optimal rate. The latter result would be useful for numerical computation of the hedging prices. Our results generalize those of ArXiv:1304.3574 to the case when static positions in (finitely many) European options can be used in the hedging portfolio.
Finance and Stochastics | 2016
Arash Fahim; Yu-Jui Huang
In a discrete-time market, we study model-independent superhedging where the semi-static superhedging portfolio consists of three parts: static positions in liquidly traded vanilla calls, static positions in other tradable, yet possibly less liquid, exotic options, and a dynamic trading strategy in risky assets under certain constraints. By considering the limit order book of each tradable exotic option and employing the Monge–Kantorovich theory of optimal transport we establish a general superhedging duality, which admits a natural connection to convex risk measures. With the aid of this duality, we derive a model-independent version of the fundamental theorem of asset pricing. The notion “finite optimal arbitrage profit”, weaker than no-arbitrage, is also introduced. It is worth noting that our method covers a large class of delta and gamma constraints.
Annals of Applied Probability | 2012
Erhan Bayraktar; Yu-Jui Huang; Qingshuo Song
Our goal is to resolve a problem proposed by Fernholz and Karatzas [On optimal arbitrage (2008) Columbia Univ.]: to characterize the minimum amount of initial capital with which an investor can beat the market portfolio with a certain probability, as a function of the market configuration and time to maturity. We show that this value function is the smallest nonnegative viscosity supersolution of a nonlinear PDE. As in Fernholz and Karatzas [On optimal arbitrage (2008) Columbia Univ.], we do not assume the existence of an equivalent local martingale measure, but merely the existence of a local martingale deflator.
Annals of Applied Probability | 2013
Erhan Bayraktar; Yu-Jui Huang
This paper resolves a question proposed in Kardaras and Robertson [Ann. Appl. Probab. 22 (2012) 1576-1610]: how to invest in a robust growth-optimal way in a market where precise knowledge of the covariance structure of the underlying assets is unavailable. Among an appropriate class of admissible covariance structures, we characterize the optimal trading strategy in terms of a generalized version of the principal eigenvalue of a fully nonlinear elliptic operator and its associated eigenfunction, by slightly restricting the collection of nondominated probability measures.
Finance and Stochastics | 2018
Yu-Jui Huang; Adrien Nguyen-Huu
Under non-exponential discounting, we develop a dynamic theory for stopping problems in continuous time. Our framework covers discount functions that induce decreasing impatience. Due to the inherent time inconsistency, we look for equilibrium stopping policies, formulated as fixed points of an operator. Under appropriate conditions, fixed-point iterations converge to equilibrium stopping policies. This iterative approach corresponds to the hierarchy of strategic reasoning in game theory and provides “agent-specific” results: it assigns one specific equilibrium stopping policy to each agent according to her initial behavior. In particular, it leads to a precise mathematical connection between the naive behavior and the sophisticated one. Our theory is illustrated in a real options model.
arXiv: Optimization and Control | 2017
Yu-Jui Huang; Zhou Zhou
arXiv: Optimization and Control | 2017
Yu-Jui Huang; Zhou Zhou
Social Science Research Network | 2017
Yu-Jui Huang; Adrien Nguyen-Huu; Xun Yu Zhou
arXiv: Probability | 2013
Xiaoshan Chen; Yu-Jui Huang; Qingshuo Song; Chao Zhu