Yu-Kai Wang
University of Technology, Sydney
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Kai Wang.
Neurocomputing | 2014
Yu-Kai Wang; Shi-An Chen; Chin-Teng Lin
The development of brain-computer interfaces (BCI) for multiple applications has undergone extensive growth in recent years. Since distracted driving is a significant cause of traffic accidents, this study proposes one BCI system based on EEG for distracted driving. The removal of artifacts and the selection of useful brain sources are the essential and critical steps in the application of electroencephalography (EEG)-based BCI. In the first model, artifacts are removed, and useful brain sources are selected based on the independent component analysis (ICA). In the second model, all distracted and concentrated EEG epochs are recognized with a self-organizing map (SOM). This BCI system automatically identified independent components with artifacts for removal and detected distracted driving through the specific brain sources which are also selected automatically. The accuracy of the proposed system approached approximately 90% for the recognition of EEG epochs of distracted and concentrated driving according to the selected frontal and left motor components.
International Journal of Neural Systems | 2016
Kuan-Chih Huang; Teng-Yi Huang; Chun-Hsiang Chuang; Jung-Tai King; Yu-Kai Wang; Chin-Teng Lin; Tzyy-Ping Jung
Research has indicated that fatigue is a critical factor in cognitive lapses because it negatively affects an individuals internal state, which is then manifested physiologically. This study explores neurophysiological changes, measured by electroencephalogram (EEG), due to fatigue. This study further demonstrates the feasibility of an online closed-loop EEG-based fatigue detection and mitigation system that detects physiological change and can thereby prevent fatigue-related cognitive lapses. More importantly, this work compares the efficacy of fatigue detection and mitigation between the EEG-based and a nonEEG-based random method. Twelve healthy subjects participated in a sustained-attention driving experiment. Each participants EEG signal was monitored continuously and a warning was delivered in real-time to participants once the EEG signature of fatigue was detected. Study results indicate suppression of the alpha- and theta-power of an occipital component and improved behavioral performance following a warning signal; these findings are in line with those in previous studies. However, study results also showed reduced warning efficacy (i.e. increased response times (RTs) to lane deviations) accompanied by increased alpha-power due to the fluctuation of warnings over time. Furthermore, a comparison of EEG-based and nonEEG-based random approaches clearly demonstrated the necessity of adaptive fatigue-mitigation systems, based on a subjects cognitive level, to deliver warnings. Analytical results clearly demonstrate and validate the efficacy of this online closed-loop EEG-based fatigue detection and mitigation mechanism to identify cognitive lapses that may lead to catastrophic incidents in countless operational environments.
international symposium on neural networks | 2011
Chin-Teng Lin; Shi-An Chen; Li-Wei Ko; Yu-Kai Wang
Distraction during driving has been recognized as a significant cause of traffic accidents. The aim of this study is to investigate Electroencephalography (EEG) -based brain dynamics in response to driving distraction. To study human cognition under specific driving tasks in a simulated driving experiment, this study utilized two simulated events including unexpected car deviations and mathematics questions. The raw data were first separated into independent brain sources by Independent Component Analysis. Then, the EEG power spectra were used to evaluate the time-frequency brain dynamics. Results showed that increases of theta band and beta band power were observed in the frontal cortex. Further analysis demonstrated that reaction time and multiple cortical EEG power had high correlation. Thus, this study suggested that the features extracted by EEG signal processing, which were the theta power increases in frontal area, could be used as the distracted indexes for early detection of driver inattention in real driving.
international conference on human-computer interaction | 2013
Yu-Kai Wang; Tzyy-Ping Jung; Shi-An Chen; Chin-Sheng Huang; Chin-Teng Lin
Distraction while driving is a serious problem that can have many catastrophic consequences. Developing a countermeasure to detect the drivers’ distraction is imperative. This study measured Electroencephalography (EEG) signals from six healthy participants while they were asked to pay their full attention to a lane-keeping driving task or a math problem-solving task. The time courses of six distinct brain networks (Frontal, Central, Parietal, Occipital, Left Motor, and Right Motor) separated by Independent Component Analysis were used to build the distraction-detection model. EEG data were segmented into 400-ms epochs. Across subjects, 80% of the EEG epochs were used to train various classifiers that were tested against the remaining 20% of the data. The classification performance based on support vector machines (SVM) with a radial basis function (RBF) kernel achieved accuracy of 84.7±2.7% or 85.8±1.3% for detecting subjects’ focuses of attention to the math-solving or lane-deviation task, respectively. The high attention-detection accuracy demonstrated the feasibility of accurately detecting drivers’ attention based on the brain activities. This demonstration may lead to a practical real-time distraction-detection system for improving road safety.
international conference of the ieee engineering in medicine and biology society | 2015
Chin-Teng Lin; Yu-Kai Wang; Chieh-Ning Fang; Yi-Hsin Yu; Jung-Tai King
The improvement of brain imaging technique brings about an opportunity for developing and investigating brain-computer interface (BCI) which is a way to interact with computer and environment. The measured brain activities usually constitute the signals of interest and noises. Applying the portable device and removing noise are the benefits to real-world BCI. In this study, one portable electroencephalogram (EEG) system non-invasively acquired brain dynamics through wireless transmission while six subjects participated in the rapid serial visual presentation (RSVP) paradigm. The event-related potential (ERP) was traditionally estimated by ensemble averaging (EA) to increase the signal-to-noise ratio. One adaptive filter of data-reusing radial basis function network (DR-RBFN) was also utilized as the estimator. The results showed that this portable EEG system stably acquired brain activities. Furthermore, the task-related potentials could be clearly explored from the limited samples of EEG data through DR-RBFN. According to the artifact-free data from the portable device, this study demonstrated the potential to move the BCI from laboratory research to real-life application in the near future.
international symposium on neural networks | 2012
Chin-Teng Lin; Yu-Kai Wang; Shi-An Chen
Brain-computer interface (BCI) has shown explosive growth for multiple applications in the recently years. Removing artifacts and selecting useful brain sources are essential in BCI research. Independent Component Analysis (ICA) has been proven as an effective technique to remove artifacts and many brain related researches are based on ICA. However, the useful independent components with brain sources are usually selected manually according to the scalp-plots. This is great inconvenience and a barrier for real-time BCI applications of EEG. In this investigation, a two-layer automatic identification model is proposed to select useful brain sources. It is based on neural network including support vector machine with radial basis function (SVMRBF) and self-organizing map (SOM). In the first layer, SVM discriminates useful independent components from the artifact effectively. In the second layer, these selected useful components are automatically classified to different spatial brain sources according to SOM. This study suggests this model to one general application for EEG study. It can reduce the effect of subjective judgment and improve the performance of EEG analysis.
Neurocomputing | 2018
Chin-Teng Lin; Mauro Nascimben; Jung-Tai King; Yu-Kai Wang
Abstract We classified the alertness levels of 17 subjects in different experimental sessions in a six-month longitudinal study based on a daily sampling system and related alertness to performance on a psychomotor vigilance task (PVT). As to our best knowledge, this is the first EEG-based longitudinal study for real-world fatigue. Alertness and PVT performance showed a monotonically increasing relationship. Moreover, we identified two measures in the entropy domain from electroencephalography (EEG) and heart rate variability (HRV) signals that were able to identify the extreme classes of PVT performers. Wiener entropy on selected leads from the frontal-parietal axis was able to discriminate the group of best performers. Sample entropy from the HRV signal was able to identify the worst performers. This joint EEG-HRV quantification provides complementary indexes to indicate more reliable human performance.
Journal of Healthcare Engineering | 2018
Chin-Teng Lin; Chih-Sheng Huang; Wen-Yu Yang; Avinash Kumar Singh; Chun-Hsiang Chuang; Yu-Kai Wang
Electroencephalogram (EEG) signals are usually contaminated with various artifacts, such as signal associated with muscle activity, eye movement, and body motion, which have a noncerebral origin. The amplitude of such artifacts is larger than that of the electrical activity of the brain, so they mask the cortical signals of interest, resulting in biased analysis and interpretation. Several blind source separation methods have been developed to remove artifacts from the EEG recordings. However, the iterative process for measuring separation within multichannel recordings is computationally intractable. Moreover, manually excluding the artifact components requires a time-consuming offline process. This work proposes a real-time artifact removal algorithm that is based on canonical correlation analysis (CCA), feature extraction, and the Gaussian mixture model (GMM) to improve the quality of EEG signals. The CCA was used to decompose EEG signals into components followed by feature extraction to extract representative features and GMM to cluster these features into groups to recognize and remove artifacts. The feasibility of the proposed algorithm was demonstrated by effectively removing artifacts caused by blinks, head/body movement, and chewing from EEG recordings while preserving the temporal and spectral characteristics of the signals that are important to cognitive research.
IEEE Transactions on Knowledge and Data Engineering | 2018
Chin-Teng Lin; Tsung-Yu Hsieh; Yu-Ting Liu; Yang-Yin Lin; Chieh-Ning Fang; Yu-Kai Wang; Gary G. Yen; Nikhil R. Pal; Chun-Hsiang Chuang
The class imbalance problem in machine learning occurs when certain classes are underrepresented relative to the others, leading to a learning bias toward the majority classes. To cope with the skewed class distribution, many learning methods featuring minority oversampling have been proposed, which are proved to be effective. To reduce information loss during feature space projection, this study proposes a novel oversampling algorithm, named minority oversampling in kernel adaptive subspaces (MOKAS), which exploits the invariant feature extraction capability of a kernel version of the adaptive subspace self-organizing maps. The synthetic instances are generated from well-trained subspaces and then their pre-images are reconstructed in the input space. Additionally, these instances characterize nonlinear structures present in the minority class data distribution and help the learning algorithms to counterbalance the skewed class distribution in a desirable manner. Experimental results on both real and synthetic data show that the proposed MOKAS is capable of modeling complex data distribution and outperforms a set of state-of-the-art oversampling algorithms.
Frontiers in Behavioral Neuroscience | 2018
Yu-Kai Wang; Tzyy-Ping Jung; Chin-Teng Lin
Performing multiple tasks simultaneously usually affects the behavioral performance as compared with executing the single task. Moreover, processing multiple tasks simultaneously often involve more cognitive demands. Two visual tasks, lane-keeping task and mental calculation, were utilized to assess the brain dynamics through 32-channel electroencephalogram (EEG) recorded from 14 participants. A 400-ms stimulus onset asynchrony (SOA) factor was used to induce distinct levels of attentional requirements. In the dual-task conditions, the deteriorated behavior reflected the divided attention and the overlapping brain resources used. The frontal, parietal and occipital components were decomposed by independent component analysis (ICA) algorithm. The event- and response-related theta and alpha oscillations in selected brain regions were investigated first. The increased theta oscillation in frontal component and decreased alpha oscillations in parietal and occipital components reflect the cognitive demands and attentional requirements as executing the designed tasks. Furthermore, time-varying interactive over-additive (O-Add), additive (Add) and under-additive (U-Add) activations were explored and summarized through the comparison between the summation of the elicited spectral perturbations in two single-task conditions and the spectral perturbations in the dual task. Add and U-Add activations were observed while executing the dual tasks. U-Add theta and alpha activations dominated the posterior region in dual-task situations. Our results show that both deteriorated behaviors and interactive brain activations should be comprehensively considered for evaluating workload or attentional interaction precisely.