Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Mei Wen is active.

Publication


Featured researches published by Yu-Mei Wen.


Nature | 2003

Unique physiological and pathogenic features of Leptospira interrogans revealed by whole-genome sequencing

Shuangxi Ren; Gang Fu; Xiu-Gao Jiangk; Rong Zeng; You-Gang Miao; Hai Xu; Yi-xuan Zhang; Hui Xiong; Gang Lu; Ling-Feng Lu; Hongquan Jiang; Jia Jia; Yuefeng Tu; Ju-Xing Jiang; Wenyi Gu; Yue-Qing Zhang; Zhen Cai; Haihui Sheng; Hai-Feng Yin; Yi Zhang; Genfeng Zhu; Ma Wank; Hong-Lei Huangk; Zhen Qian; Wang S; Wei Ma; Zhijian Yao; Yan Shen; Boqin Qiang; Qi-Chang Xia

Leptospirosis is a widely spread disease of global concern. Infection causes flu-like episodes with frequent severe renal and hepatic damage, such as haemorrhage and jaundice. In more severe cases, massive pulmonary haemorrhages, including fatal sudden haemoptysis, can occur. Here we report the complete genomic sequence of a representative virulent serovar type strain (Lai) of Leptospira interrogans serogroup Icterohaemorrhagiae consisting of a 4.33-megabase large chromosome and a 359-kilobase small chromosome, with a total of 4,768 predicted genes. In terms of the genetic determinants of physiological characteristics, the facultatively parasitic L. interrogans differs extensively from two other strictly parasitic pathogenic spirochaetes, Treponema pallidum and Borrelia burgdorferi, although similarities exist in the genes that govern their unique morphological features. A comprehensive analysis of the L. interrogans genes for chemotaxis/motility and lipopolysaccharide synthesis provides a basis for in-depth studies of virulence and pathogenesis. The discovery of a series of genes possibly related to adhesion, invasion and the haematological changes that characterize leptospirosis has provided clues about how an environmental organism might evolve into an important human pathogen.


Molecular Microbiology | 2003

Genome-based analysis of virulence genes in a non-biofilm-forming Staphylococcus epidermidis strain (ATCC 12228)

Yue-Qing Zhang; Shuangxi Ren; Hua-Lin Li; Yong-Xiang Wang; Gang Fu; Jian Yang; Zhiqiang Qin; You-Gang Miao; Wen-Yi Wang; Run-Sheng Chen; Yan Shen; Zhu Chen; Zhenghong Yuan; Guoping Zhao; Di Qu; Antoine Danchin; Yu-Mei Wen

Staphylococcus epidermidis strains are diverse in their pathogenicity; some are invasive and cause serious nosocomial infections, whereas others are non‐pathogenic commensal organisms. To analyse the implications of different virulence factors in Staphylococcus epidermidis infections, the complete genome of Staphylococcus epidermidis strain ATCC 12228, a non‐biofilm forming, non‐infection associated strain used for detection of residual antibiotics in food products, was sequenced. This strain showed low virulence by mouse and rat experimental infections. The genome consists of a single 2499 279 bp chromosome and six plasmids. The chromosomal G + C content is 32.1% and 2419 protein coding sequences (CDS) are predicted, among which 230 are putative novel genes. Compared to the virulence factors in Staphylococcus aureus, aside from δ‐haemolysin and β‐haemolysin, other toxin genes were not found. In contrast, the majority of adhesin genes are intact in ATCC 12228. Most strikingly, the ica operon coding for the enzymes synthesizing interbacterial cellular polysaccharide is missing in ATCC 12228 and rearrangements of adjacent genes are shown. No mec genes, IS256, IS257, were found in ATCC 12228. It is suggested that the absence of the ica operon is a genetic marker in commensal Staphylococcus epidermidis strains which are less likely to become invasive.


PLOS ONE | 2008

A Randomized Controlled Phase IIb Trial of Antigen-Antibody Immunogenic Complex Therapeutic Vaccine in Chronic Hepatitis B Patients

Dao-Zhen Xu; Kai Zhao; Li-Min Guo; Lanjuan Li; Qin Xie; Hong Ren; Jiming Zhang; Min Xu; Hui-Fen Wang; Wen-Xiang Huang; Xuefan Bai; Junqi Niu; Pei Liu; Xinyue Chen; Xin-Liang Shen; Zhenghong Yuan; Xuan-Yi Wang; Yu-Mei Wen

Background The safety of the immune complexes composed of yeast-derived hepatitis B surface antigen (HBsAg) and antibodies (abbreviated as YIC) among healthy adults and chronic hepatitis B patients has been proved in phase I and phase IIa trial. A larger number of patients for study of dosage and efficacy are therefore needed. Methods and Principal Findings Two hundred forty two HBeAg-positive chronic hepatitis B patients were immunized with six injections of either 30 µg YIC, 60 µg of YIC or alum adjuvant as placebo at four-week intervals under code. HBV markers and HBV DNA were monitored during immunization and 24 weeks after the completion of immunization. The primary endpoint was defined as loss of HBeAg, or presence of anti-HBe antibody or suppression of HBV DNA, while the secondary endpoint was both HBeAg seroconversion and suppression of HBV DNA. Statistical significance was not reached in primary endpoints four weeks after the end of treatment among three groups, however, at the end of follow-up, HBeAg sero-conversion rate was 21.8%(17/78) and 9% (7/78) in the 60 µg YIC and placebo groups respectively (p = 0.03), with 95% confidence intervals at 1.5% to 24.1%. Using generalized estimating equations (GEEs) model, a significant difference of group effects was found between 60 µg YIC and the placebo groups in terms of the primary endpoint. Eleven serious adverse events occurred, which were 5.1%, 3.6%, and 5.0% in the placebo, 30 µg YIC and 60 µg YIC groups respectively (p>0.05). Conclusions Though statistical differences in the preset primary and secondary endpoints among the three groups were not reached, a late and promising HBeAg seroconversion effect was shown in the 60 µg YIC immunized regimen. By increasing the number of patients and injections, the therapeutic efficacy of YIC in chronic hepatitis B patients will be further evaluated. Trial Registration ChiCTR.org ChiCTR-TRC-00000022


Journal of Hepatology | 2013

Results of a phase III clinical trial with an HBsAg-HBIG immunogenic complex therapeutic vaccine for chronic hepatitis B patients: Experiences and findings

Dao-Zhen Xu; Xuan-Yi Wang; Xin-Liang Shen; Guozhong Gong; Hong Ren; Li-Min Guo; Ai-Min Sun; Min Xu; Lanjuan Li; Xin-Hui Guo; Zhen Zhen; Hui-Fen Wang; Huan-Yu Gong; Cheng Xu; Nan Jiang; Chen Pan; Zuo-Jiong Gong; Jiming Zhang; Jia Shang; Jie Xu; Q. Xie; Tie-Feng Wu; Wenxiang Huang; Yongguo Li; Jing Xu; Zhenghong Yuan; Bin Wang; Kai Zhao; Yu-Mei Wen

BACKGROUND & AIMS Even though various experimental therapeutic approaches for chronic hepatitis B infection have been reported, few of them have been verified by clinical trials. We have developed an antigen-antibody (HBsAg-HBIG) immunogenic complex therapeutic vaccine candidate with alum as adjuvant (YIC), aimed at breaking immune tolerance to HBV by modulating viral antigen processing and presentation. A double-blind, placebo-controlled, phase II B clinical trial of YIC has been reported previously, and herein we present the results of the phase III clinical trial of 450 patients. METHODS Twelve doses of either YIC or alum alone as placebo were administered randomly to 450 CHB patients and they were followed for 24weeks after the completion of immunization. The primary end point was HBeAg seroconversion, and the secondary end points were decrease in viral load, improvement of liver function, and histology. RESULTS In contrast to the previous phase II B trial using six doses of YIC and alum as placebo, six more injections of YIC or alum resulted in a decrease of the HBeAg seroconversion rate from 21.8% to 14.0% in the YIC group, but an increase from 9% to 21.9% in the alum group. Decrease in serum HBV DNA and normalization of liver function were similar in both groups (p>0.05). CONCLUSIONS Overstimulation with YIC did not increase but decreased its efficacy due to immune fatigue in hosts. An appropriate immunization protocol should be explored and is crucial for therapeutic vaccination. Multiple injections of alum alone could have stimulated potent inflammatory and innate immune responses contributing to its therapeutic efficacy, and needs further investigation.


Journal of Virology | 2001

A Single Amino Acid in the Reverse Transcriptase Domain of Hepatitis B Virus Affects Virus Replication Efficiency

Xu Lin; Zhenghong Yuan; Li Wu; Jian-Ping Ding; Yu-Mei Wen

ABSTRACT To explore functional domains in the hepatitis B virus (HBV) polymerase, two naturally occurring HBV isolates (56 and 2-18) with 98.7% nucleic acid sequence homology but different replication efficiencies were studied. After transfection into HepG2 cells, HBV DNA isolated from intracellular virus core particles was much higher in 56-transfected cells than in cells transfected with 2-18. The structural basis for the difference in replication efficiency between these two isolates was studied by functional domain gene substitution. The complete polymerase (P) gene and its gene segments coding for the terminal protein (TP), spacer (SP), reverse transcriptase (RT), and RNase H in 2-18 were separately replaced with their counterparts from 56 to construct full-length chimeric genomes. Cell transfection analysis revealed that substitution of the complete P gene of 2-18 with the P gene from 56 slightly enhanced viral replication. The only chimeric genome that regained the high replication efficiency of the original 56 isolate was the one with substitution of the RT gene of 2-18 with that from 56. Within the RT region, amino acid differences between isolates 2-18 and 56 were located at positions 617 (methionine versus leucine), 652 (serine versus proline), and 682 (valine versus leucine). Point mutation identified amino acid 652 as being responsible for the difference in replication efficiency. Homologous modeling studies of the HBV RT domain suggest that the mutation of residue 652 from proline to serine might affect the conformation of HBV RT which interacts with the template-primer, leading to impaired polymerase activity.


Journal of Virology | 2010

Hepatitis B Virus (HBV) Surface Antigen Interacts with and Promotes Cyclophilin A Secretion: Possible Link to Pathogenesis of HBV Infection

Xiaochen Tian; Chao Zhao; Hongguang Zhu; Weimin She; Jiming Zhang; Jing Liu; Lanjuan Li; Shusen Zheng; Yu-Mei Wen; Youhua Xie

ABSTRACT Cyclophilin A (CypA), predominantly located intracellularly, is a multifunctional protein. We previously reported decreased CypA levels in hepatocytes of transgenic mice expressing hepatitis B virus (HBV) surface antigen (HBsAg). In this study, we found that expression of HBV small surface protein (SHBs) in human hepatoma cell lines specifically triggered CypA secretion, whereas SHBs added extracellularly to culture medium did not. Moreover, CypA secretion was not promoted by the expression of a secretion deficient SHBs mutant, suggesting a close association between secretion of CypA and SHBs. Interaction between CypA and SHBs was observed by using coimmunoprecipitation and glutathione S-transferase pull-down assays. Hydrodynamic injection of the SHBs expression construct into C57BL/6J mice resulted in increased serum CypA levels and ALT/AST levels, as well as the infiltration of inflammatory cells surrounding SHBs-positive hepatocytes. The inflammatory response and serum ALT/AST level were reduced when the chemotactic effect of CypA was inhibited by cyclosporine and anti-CD147 antibody. Furthermore, higher serum CypA levels were detected in chronic hepatitis B patients than in healthy individuals. In HBV patients who had received liver transplantation, serum CypA levels declined dramatically after the loss of HBsAg as a consequence of liver transplantation. Taken together, these results indicate that expression and secretion of SHBs can promote CypA secretion, which may contribute to the pathogenesis of HBV infection.


Vaccine | 2005

Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice.

Di Qu; Bo-Jian Zheng; Xin Yao; Yi Guan; Zhenghong Yuan; Nan-Shan Zhong; Li-Wei Lu; Jian-Ping Xie; Yu-Mei Wen

Abstract SARS-CoV (severe acute respiratory syndrome-associated coronavirus) strain GZ50 was partially purified and inactivated with 1:2000 formaldehyde. In cell culture the inactivated virus blocked the replication of live virus by decreasing the TCID5.0 of the live virus 103.6 to 104.6 times. Inactivated GZ50 was used to immunize mice intranasally either alone, or after precipitation with polyethylene glycol (PEG), or with CpG, or CTB as an adjuvant. The titer of serum neutralizing antibodies was up to 1:640. In mice immunized with adjuvants or PEG precipitated GZ50, specific IgA was detected in tracheal-lung wash fluid by immunofluorescence. Though serum antibodies were detected, no anti-SARS-IgA could be detected in mice immunized only with inactivated GZ50. The roles of adjuvants in intranasal immunization with inactivated. SARS-CoV is discussed.


Journal of Virology | 2008

Combination of an Antiviral Drug and Immunomodulation against Hepadnaviral Infection in the Woodchuck Model

Mengji Lu; Xin Yao; Yang Xu; Heike Lorenz; Uta Dahmen; Haidong Chi; Olaf Dirsch; Thekla Kemper; Lifang He; Dieter Glebe; Wolfram H. Gerlich; Yu-Mei Wen; Michael Roggendorf

ABSTRACT The essential role of multispecific immune responses for the control of hepatitis B virus (HBV) infection implies the need of multimodal therapeutic strategies for chronic HBV infection, including antiviral chemotherapy and immunomodulation. This hypothesis was tested in the woodchuck model by a combination of lamivudine pretreatment and subsequent immunizations of woodchucks chronically infected with woodchuck hepatitis virus. The immunizations were performed with DNA vaccines or antigen-antibody immune complexes (IC)/DNA vaccines. Immunizations with IC/DNA vaccines led to an anti-woodchuck hepatitis virus surface antibody response and significant reductions of viral load and antigenemia, suggesting that such a strategy may be effective against chronic HBV infection.


Emerging microbes & infections | 2013

Hepatitis B virus genetic variants: biological properties and clinical implications.

Shuping Tong; Jisu Li; Jack R. Wands; Yu-Mei Wen

Hepatitis B virus (HBV) causes a chronic infection in 350 million people worldwide and greatly increases the risk of liver cirrhosis and hepatocellular carcinoma. The majority of chronic HBV carriers live in Asia. HBV can be divided into eight genotypes with unique geographic distributions. Mutations accumulate during chronic infection or in response to external pressure. Because HBV is an RNA-DNA virus the emergence of drug resistance and vaccine escape mutants has become an important clinical and public health concern. Here, we provide an overview of the molecular biology of the HBV life cycle and an evaluation of the changing role of hepatitis B e antigen (HBeAg) at different stages of infection. The impact of viral genotypes and mutations/deletions in the precore, core promoter, preS, and S gene on the establishment of chronic infection, development of fulminant hepatitis and liver cancer is discussed. Because HBV is prone to mutations, the biological properties of drug-resistant and vaccine escape mutants are also explored.


Journal of Virology | 2013

Novel Recombinant Hepatitis B Virus Vectors Efficiently Deliver Protein and RNA Encoding Genes into Primary Hepatocytes

Ran Hong; Weiya Bai; Jianwei Zhai; Wei Liu; Xinyan Li; Jiming Zhang; Xiaoxian Cui; Xue Zhao; Xiaoli Ye; Qiang Deng; Pierre Tiollais; Yu-Mei Wen; Jing Liu; Youhua Xie

ABSTRACT Hepatitis B virus (HBV) has extremely restricted host and hepatocyte tropism. HBV-based vectors could form the basis of novel therapies for chronic hepatitis B and other liver diseases and would also be invaluable for the study of HBV infection. Previous attempts at developing HBV-based vectors encountered low yields of recombinant viruses and/or lack of sufficient infectivity/cargo gene expression in primary hepatocytes, which hampered follow-up applications. In this work, we constructed a novel vector based on a naturally occurring, highly replicative HBV mutant with a 207-bp deletion in the preS1/polymerase spacer region. By applying a novel insertion strategy that preserves the continuity of the polymerase open reading frame (ORF), recombinant HBV (rHBV) carrying protein or small interfering RNA (siRNA) genes were obtained that replicated and were packaged efficiently in cultured hepatocytes. We demonstrated that rHBV expressing a fluorescent reporter (DsRed) is highly infective in primary tree shrew hepatocytes, and rHBV expressing HBV-targeting siRNA successfully inhibited antigen expression from coinfected wild-type HBV. This novel HBV vector will be a powerful tool for hepatocyte-targeting gene delivery, as well as the study of HBV infection.

Collaboration


Dive into the Yu-Mei Wen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge