Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Na Choi is active.

Publication


Featured researches published by Yu-Na Choi.


Physics in Medicine and Biology | 2012

A Monte Carlo simulation study of the effect of energy windows in computed tomography images based on an energy-resolved photon counting detector

Seung-Wan Lee; Yu-Na Choi; Hyo-Min Cho; Young-Jin Lee; Hyun-Ju Ryu; Hee-Joung Kim

The energy-resolved photon counting detector provides the spectral information that can be used to generate images. The novel imaging methods, including the K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging, are based on the energy-resolved photon counting detector and can be realized by using various energy windows or energy bins. The location and width of the energy windows or energy bins are important because these techniques generate an image using the spectral information defined by the energy windows or energy bins. In this study, the reconstructed images acquired with K-edge imaging, projection-based energy weighting imaging and image-based energy weighting imaging were simulated using the Monte Carlo simulation. The effect of energy windows or energy bins was investigated with respect to the contrast, coefficient-of-variation (COV) and contrast-to-noise ratio (CNR). The three images were compared with respect to the CNR. We modeled the x-ray computed tomography system based on the CdTe energy-resolved photon counting detector and polymethylmethacrylate phantom, which have iodine, gadolinium and blood. To acquire K-edge images, the lower energy thresholds were fixed at K-edge absorption energy of iodine and gadolinium and the energy window widths were increased from 1 to 25 bins. The energy weighting factors optimized for iodine, gadolinium and blood were calculated from 5, 10, 15, 19 and 33 energy bins. We assigned the calculated energy weighting factors to the images acquired at each energy bin. In K-edge images, the contrast and COV decreased, when the energy window width was increased. The CNR increased as a function of the energy window width and decreased above the specific energy window width. When the number of energy bins was increased from 5 to 15, the contrast increased in the projection-based energy weighting images. There is a little difference in the contrast, when the number of energy bin is increased from 15 to 33. The COV of the background in the projection-based energy weighting images is only slightly changed as a function of the number of energy bins. In the image-based energy weighting images, when the number of energy bins were increased, the contrast and COV increased and decreased, respectively. The CNR increased as a function of the number of energy bins. It was concluded that the image quality is dependent on the energy window, and an appropriate choice of the energy window is important to improve the image quality.


Physics in Medicine and Biology | 2014

Quantitative material decomposition using spectral computed tomography with an energy-resolved photon-counting detector.

Seung-Wan Lee; Yu-Na Choi; Hee-Joung Kim

Dual-energy computed tomography (CT) techniques have been used to decompose materials and characterize tissues according to their physical and chemical compositions. However, these techniques are hampered by the limitations of conventional x-ray detectors operated in charge integrating mode. Energy-resolved photon-counting detectors provide spectral information from polychromatic x-rays using multiple energy thresholds. These detectors allow simultaneous acquisition of data in different energy ranges without spectral overlap, resulting in more efficient material decomposition and quantification for dual-energy CT. In this study, a pre-reconstruction dual-energy CT technique based on volume conservation was proposed for three-material decomposition. The technique was combined with iterative reconstruction algorithms by using a ray-driven projector in order to improve the quality of decomposition images and reduce radiation dose. A spectral CT system equipped with a CZT-based photon-counting detector was used to implement the proposed dual-energy CT technique. We obtained dual-energy images of calibration and three-material phantoms consisting of low atomic number materials from the optimal energy bins determined by Monte Carlo simulations. The material decomposition process was accomplished by both the proposed and post-reconstruction dual-energy CT techniques. Linear regression and normalized root-mean-square error (NRMSE) analyses were performed to evaluate the quantitative accuracy of decomposition images. The calibration accuracy of the proposed dual-energy CT technique was higher than that of the post-reconstruction dual-energy CT technique, with fitted slopes of 0.97-1.01 and NRMSEs of 0.20-4.50% for all basis materials. In the three-material phantom study, the proposed dual-energy CT technique decreased the NRMSEs of measured volume fractions by factors of 0.17-0.28 compared to the post-reconstruction dual-energy CT technique. It was concluded that the proposed dual-energy CT technique can potentially be used to decompose mixtures into basis materials and characterize tissues according to their composition.


Proceedings of SPIE | 2011

Imaging properties of the magnification factor in digital mammography by the generalized MTF (GMTF)

Hye-Suk Park; Hee-Joung Kim; Hyo-Min Cho; Chang-Lae Lee; Dae-Hong Kim; Seung-Wan Lee; Yu-Na Choi

Our aim in this study was to examine the resolution effects of breast thickness in magnification technique by evaluating generalized modulation transfer function (GMTF) including the effect of focal spot, effective pixel size and the scatter. The PMMAs ranging from 10 to 40 mm in thickness were placed on a standard supporting platform that was positioned to achieve magnification factors ranging from 1.2 to 2.0. As the magnification increased, the focal spot MTF degraded while the detector MTF improved. A small focal spot resulted in an improvement of GMTF due to a smaller effective pixel size by magnification. In contrast, a large focal spot resulted in significant degradation of GMTF due to dominating the effect of focal spot blurring. The resolution of small focal spot did improve slightly with increasing PMMA thickness for magnification factors less than 1.8. System resolution decreased with increasing PMMA thickness for magnification factors greater than 1.8, since focal spot blur begins to dominate spatial resolution. In particular, breast thickness had a large effect on the resolution at lower frequencies as a low frequency drop effect. Hence, the effect of compressed breast thickness should be considered for the standard magnification factor of 1.8 that is most commonly used in clinical practice. Our results should provide insights for determining optimum magnification in clinical application of digital mammography, and our approaches can be extended to a wide diversity of radiological imaging systems.


Proceedings of SPIE | 2012

Absolute measurement of effective atomic number and electron density using dual-energy computed tomography images

Dae-Hong Kim; Hee-Joung Kim; Chang-Lae Lee; Hyo-Min Cho; Hye-Suk Park; Seung-Wan Lee; Yu-Na Choi; Ye-seul Kim; Su-Jin Park

The dual-energy computed tomography (CT) techniques can be adopted to separate the materials having similar Houndsfield Unit (HU) value such as tissues. In the technique, CT image values can be described as effective atomic number and electron density using the dual-energy equation. In this work, we measured effective atomic number and electron density using dual-energy CT images and assessed the image quality in vascular application. For the effective atomic number assessment, the measurements of a Polymethyl methacrylate (PMMA) and water demonstrated small discrepancies of 3.28 % and 5.56 %, respectively. For electron density measurement, the experimental errors of PMMA and water were 7.83 % and 4.00 %, respectively. The trend obtained when comparing the HU values and absolute values such as effective atomic number and electron density demonstrates that the CNR of the HU values is higher than that of the absolute values such as effective atomic number and electron density. With contrast media having low concentration, it is remarkable that the effective atomic number image occasionally has higher CNR values than the HU images. In this study, small discrepancies between the experimental values and known values were obtained. The CNR values provided meaningful results for the absolute measurements in a dual-energy CT technique.


ieee nuclear science symposium | 2011

The effects of spectral distortion on multi-energy X-ray imaging based on photon counting detector

Hyo-Min Cho; Yu-Na Choi; Seung-Wan Lee; Hyun-Ju Ryu; Young-Jin Lee; Hee-Joung Kim

We studied the effect of spectral distortions on X-ray imaging observed by photon-counting detectors. The photon counting-based imaging system used in this study consisted of a micro focus X-ray source and cadmium telluride (CdTe) detector.


ieee nuclear science symposium | 2011

Comparison of material decomposition methods in contrast enhancement digital mammography based on photon counting

Yu-Na Choi; Hee-Joung Kim; Hyo-Min Cho; Seung-Wan Lee; Hyun-Ju Ryu; Young-Jin Lee

Photon counting detector with energy discrimination has made it possible to decompose materials. In this study, we compared two material decomposition methods in CEDM using a Monte Carlo simulation. The K-edge and dual energy imaging methods were used for material decomposition. We designed the cadmium telluride (CdTe) detector based on photon counting using GEANT4 Application for Tomographic Emission (GATE) version 6.0 simulation tools. The CdTe detector was 44.8×44.8 mm2 and thickness of 1 mm. To verify the material decomposition ability, we designed the phantom with GATE. The phantom was a cylinder of breast equivalent tissue material (ICRU-44) containing iodine inserts at various thicknesses ranging from 0.3 to 1.5 mm. Thicknesses of breast equivalent tissue material was 20, 30, 40, and 50 mm. First, to verify the material decomposition ability of K-edge imaging, we obtained image from 34–44 keV energy window because the K-edge energy of iodine is 33.2 keV. Second, for the dual energy imaging methods, we acquired two images with below and above the iodine K-edge energy using one exposure with energy selective windows. Data for material decomposition algorithm were obtained for various combinations step wedge phantom of breast tissue equivalent materials and iodine. The images from the phantom were used to produce the inverse mapping functions. The ability of material decomposition was investigated in terms of a contrast-to-noise ratio (CNR). According to the results, the CNR with K-edge imaging method was higher than dual energy method. The calculated values of CNR with K-edge imaging method were approximately 1.60 times higher than with dual energy imaging method. Our studies may be used as a basis for future studies on X-ray imaging based on photon counting.


Medical Imaging 2018: Physics of Medical Imaging | 2018

Development of virtual monochromatic imaging technique with spectral CT based on a photon-counting detector

Sooncheol Kang; Jisoo Eom; Burnyoung Kim; Duhgoon Lee; Chang-Lae Lee; Jinwook Jung; Wooyoung Jang; Yu-Na Choi; Seungwan Lee

With the advent of the coherent age the implementation of massive digital signal processors (DSP) co-integrated with high speed AD and DA converters became feasible allowing for the realization of huge flexibility of transponders. Today the implementation of variable transponders is mainly based on variable programming of DSP to support different modulation formats and symbol rates. Modulation formats with high flexibility are required such as pragmatic QAM formats and hybrid modulation formats. Furthermore, we report on an implementable probabilistically shaping technique allowing for adjusting the bitrate. We introduce fundamental characteristics of all modes and describe basic operation principles. The modifications of the operational modes are enabled simply by switching between different formats and symbol rates in the DSP to adjust the transponders spectral efficiency, the bitrate and the maximum transmission distance. A fine granularity in bitrate and in maximum transmission distance can be implemented especially by hybrid formats and by probabilistically shaped formats. Furthermore, latter allow for ~+25% increase of the maximum transmission distance due their operation close to the Shannon limit as a consequence of their 2D Gaussian like signal nature. If the flexibility and programmability of transponders is implemented, it can be utilized to support different strategies for the application. The variability in symbol rate is mainly translated into variability in bitrate and in bandwidth consumption. Contrary the variable spectral efficiency translates into a variation of the maximum transmission reach and of the bitrate. A co-adjustment of both options will lead to a superior flexibility of optical transponders to address all requirements from application, transponder and fiber infrastructure perspective.


Physics in Medicine and Biology | 2016

Reducing radiation dose by application of optimized low-energy x-ray filters to K-edge imaging with a photon counting detector.

Yu-Na Choi; Seungwan Lee; Hee-Joung Kim

K-edge imaging with photon counting x-ray detectors (PCXDs) can improve image quality compared with conventional energy integrating detectors. However, low-energy x-ray photons below the K-edge absorption energy of a target material do not contribute to image formation in the K-edge imaging and are likely to be completely absorbed by an object. In this study, we applied x-ray filters to the K-edge imaging with a PCXD based on cadmium zinc telluride for reducing radiation dose induced by low-energy x-ray photons. We used aluminum (Al) filters with different thicknesses as the low-energy x-ray filters and implemented the iodine K-edge imaging with an energy bin of 34-48 keV at the tube voltages of 50, 70 and 90 kVp. The effects of the low-energy x-ray filters on the K-edge imaging were investigated with respect to signal-difference-to-noise ratio (SDNR), entrance surface air kerma (ESAK) and figure of merit (FOM). The highest value of SDNR was observed in the K-edge imaging with a 2 mm Al filter, and the SDNR decreased as a function of the filter thicknesses. Compared to the K-edge imaging with a 2 mm Al filter, the ESAK was reduced by 66%, 48% and 39% in the K-edge imaging with a 12 mm Al filter for 50 kVp, 70 kVp and 90 kVp, respectively. The FOM values, which took into account the ESAK and SDNR, were maximized for 8, 6 to 8 and 4 mm Al filters at 50 kVp, 70 kVp and 90 kVp, respectively. We concluded that the use of an optimal low-energy filter thickness, which was determined by maximizing the FOM, could significantly reduce radiation dose while maintaining image quality in the K-edge imaging with the PCXD.


Proceedings of SPIE | 2014

Projection-based energy weighting on photon-counting X-ray imagesin digital subtraction mammography: a feasibility study

Sunghoon Choi; Seung-Wan Lee; Yu-Na Choi; Young-Jin Lee; Hee-Joung Kim

In digital subtraction mammography where subtracts the one image (with contrast medium) from the other (anatomical background) for observing the tumor structure, tumors which include more blood vessels than normal tissue could be distinguished through the enhancement of contrast-to-noise ratio (CNR). In order to improve CNR, we adopted projection-based energy weighting for iodine solutions with four different concentrations embedded in a breast phantom (50% adipose and 50% glandular tissues). In this study, a Monte Carlo simulation was used to simulate a 40 mm thickness breast phantom, which has 15 and 30 mg/cm3 iodine solutions with two different thicknesses, and an energy resolving photon-counting system. The input energy spectrum was simulated in a range of 20 to 45 keV in order to reject electronic noise and include k-edge energy of iodine (33.2 keV). The results showed that the projection-based energy weighting improved the CNR by factors of 1.05-1.86 compared to the conventional integrating images. Consequently, the CNR of images from the digital subtraction mammography could be improved by the projection-based energy weighting with photon-counting detectors.


Archive | 2013

Simulation studies of a high resolution SPECT system for a photon counting semiconductor detector

Young-Jin Lee; Hyun-Ju Ryu; Hyo-Min Cho; Seung-Wan Lee; Yu-Na Choi; Hee-Joung Kim

Photon counting detector using cadmium telluride (CdTe) or cadmium zinc telluride (CZT) has benefits compared to conventional scintillation detector. These materials have advantageous physical characteristics for nuclear medicine imaging. Recently, for improvement of the sensitivity and the spatial resolution, many researchers have been investigated using these materials. By using the pixelated parallel-hole collimator, we may be able to improve the sensitivity in small pixel condition and the spatial resolution. In this study, we simulated the SPECT system using the photon counting detector based on CdTe and CZT, and evaluated the performance of these systems. We performed a simulation study using the Geant4 Application for Tomographic Emission (GATE) simulation. The proposed system was equipped with a CdTe and CZT detector with very small pixels such as 0.35 × 0.35 mm2. The results showed that the proposed system could be acquired the 0.46 mm spatial resolution located at 2 cm from the collimator. In conclusion, our results demonstrated that we established the high resolution SPECT system with the pixelated parallel-hole collimator.

Collaboration


Dive into the Yu-Na Choi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge