Yu-Ru Lin
Arizona State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Ru Lin.
international world wide web conferences | 2008
Yu-Ru Lin; Yun Chi; Shenghuo Zhu; Hari Sundaram; Belle L. Tseng
We discover communities from social network data, and analyze the community evolution. These communities are inherent characteristics of human interaction in online social networks, as well as paper citation networks. Also, communities may evolve over time, due to changes to individuals roles and social status in the network as well as changes to individuals research interests. We present an innovative algorithm that deviates from the traditional two-step approach to analyze community evolutions. In the traditional approach, communities are first detected for each time slice, and then compared to determine correspondences. We argue that this approach is inappropriate in applications with noisy data. In this paper, we propose FacetNet for analyzing communities and their evolutions through a robust unified process. In this novel framework, communities not only generate evolutions, they also are regularized by the temporal smoothness of evolutions. As a result, this framework will discover communities that jointly maximize the fit to the observed data and the temporal evolution. Our approach relies on formulating the problem in terms of non-negative matrix factorization, where communities and their evolutions are factorized in a unified way. Then we develop an iterative algorithm, with proven low time complexity, which is guaranteed to converge to an optimal solution. We perform extensive experimental studies, on both synthetic datasets and real datasets, to demonstrate that our method discovers meaningful communities and provides additional insights not directly obtainable from traditional methods.
ACM Transactions on Knowledge Discovery From Data | 2009
Yu-Ru Lin; Yun Chi; Shenghuo Zhu; Hari Sundaram; Belle L. Tseng
We discover communities from social network data and analyze the community evolution. These communities are inherent characteristics of human interaction in online social networks, as well as paper citation networks. Also, communities may evolve over time, due to changes to individuals roles and social status in the network as well as changes to individuals research interests. We present an innovative algorithm that deviates from the traditional two-step approach to analyze community evolutions. In the traditional approach, communities are first detected for each time slice, and then compared to determine correspondences. We argue that this approach is inappropriate in applications with noisy data. In this paper, we propose FacetNet for analyzing communities and their evolutions through a robust unified process. This novel framework will discover communities and capture their evolution with temporal smoothness given by historic community structures. Our approach relies on formulating the problem in terms of maximum a posteriori (MAP) estimation, where the community structure is estimated both by the observed networked data and by the prior distribution given by historic community structures. Then we develop an iterative algorithm, with proven low time complexity, which is guaranteed to converge to an optimal solution. We perform extensive experimental studies, on both synthetic datasets and real datasets, to demonstrate that our method discovers meaningful communities and provides additional insights not directly obtainable from traditional methods.
knowledge discovery and data mining | 2009
Yu-Ru Lin; Jimeng Sun; Paul C. Castro; Ravi B. Konuru; Hari Sundaram; Aisling Kelliher
This paper aims at discovering community structure in rich media social networks, through analysis of time-varying, multi-relational data. Community structure represents the latent social context of user actions. It has important applications in information tasks such as search and recommendation. Social media has several unique challenges. (a) In social media, the context of user actions is constantly changing and co-evolving; hence the social context contains time-evolving multi-dimensional relations. (b) The social context is determined by the available system features and is unique in each social media website. In this paper we propose MetaFac (MetaGraph Factorization), a framework that extracts community structures from various social contexts and interactions. Our work has three key contributions: (1) metagraph, a novel relational hypergraph representation for modeling multi-relational and multi-dimensional social data; (2) an efficient factorization method for community extraction on a given metagraph; (3) an on-line method to handle time-varying relations through incremental metagraph factorization. Extensive experiments on real-world social data collected from the Digg social media website suggest that our technique is scalable and is able to extract meaningful communities based on the social media contexts. We illustrate the usefulness of our framework through prediction tasks. We outperform baseline methods (including aspect model and tensor analysis) by an order of magnitude.
web intelligence | 2007
Yu-Ru Lin; Hari Sundaram; Yun Chi; Junichi Tatemura; Belle L. Tseng
There are information needs involving costly decisions that cannot be efficiently satisfied through conventional Web search engines. Alternately, community centric search can provide multiple viewpoints to facilitate decision making. We propose to discover and model the temporal dynamics of thematic communities based on mutual awareness, where the awareness arises due to observable blogger actions and the expansion of mutual awareness leads to community formation. Given a query, we construct a directed action graph that is time-dependent, and weighted with respect to the query. We model the process of mutual awareness expansion using a random walk process and extract communities based on the model. We propose an interaction space based representation to quantify community dynamics. Each community is represented as a vector in the interaction space and its evolution is determined by a novel interaction correlation method. We have conducted experiments with a real-world blog dataset and have promising results for detection as well as insightful results for community evolution.
adversarial information retrieval on the web | 2007
Yu-Ru Lin; Hari Sundaram; Yun Chi; Junichi Tatemura; Belle L. Tseng
This paper focuses on spam blog (splog) detection. Blogs are highly popular, new media social communication mechanisms. The presence of splogs degrades blog search results as well as wastes network resources. In our approach we exploit unique blog temporal dynamics to detect splogs.n There are three key ideas in our splog detection framework. We first represent the blog temporal dynamics using self-similarity matrices defined on the histogram intersection similarity measure of the time, content, and link attributes of posts. Second, we show via a novel visualization that the blog temporal characteristics reveal attribute correlation, depending on type of the blog (normal blogs and splogs). Third, we propose the use of temporal structural properties computed from self-similarity matrices across different attributes. In a splog detector, these novel features are combined with content based features. We extract a content based feature vector from different parts of the blog -- URLs, post content, etc. The dimensionality of the feature vector is reduced by Fisher linear discriminant analysis. We have tested an SVM based splog detector using proposed features on real world datasets, with excellent results (90% accuracy).
ACM Transactions on The Web | 2008
Yu-Ru Lin; Hari Sundaram; Yun Chi; Junichi Tatemura; Belle L. Tseng
This article addresses the problem of spam blog (splog) detection using temporal and structural regularity of content, post time and links. Splogs are undesirable blogs meant to attract search engine traffic, used solely for promoting affiliate sites. Blogs represent popular online media, and splogs not only degrade the quality of search engine results, but also waste network resources. The splog detection problem is made difficult due to the lack of stable content descriptors.n We have developed a new technique for detecting splogs, based on the observation that a blog is a dynamic, growing sequence of entries (or posts) rather than a collection of individual pages. In our approach, splogs are recognized by their temporal characteristics and content. There are three key ideas in our splog detection framework. (a) We represent the blog temporal dynamics using self-similarity matrices defined on the histogram intersection similarity measure of the time, content, and link attributes of posts, to investigate the temporal changes of the post sequence. (b) We study the blog temporal characteristics using a visual representation derived from the self-similarity measures. The visual signature reveals correlation between attributes and posts, depending on the type of blogs (normal blogs and splogs). (c) We propose two types of novel temporal features to capture the splog temporal characteristics. In our splog detector, these novel features are combined with content based features. We extract a content based feature vector from blog home pages as well as from different parts of the blog. The dimensionality of the feature vector is reduced by Fisher linear discriminant analysis. We have tested an SVM-based splog detector using proposed features on real world datasets, with appreciable results (90% accuracy).
ACM Transactions on Knowledge Discovery From Data | 2011
Yu-Ru Lin; Jimeng Sun; Hari Sundaram; Aisling Kelliher; Paul C. Castro; Ravi B. Konuru
This work aims at discovering community structure in rich media social networks through analysis of time-varying, multirelational data. Community structure represents the latent social context of user actions. It has important applications such as search and recommendation. The problem is particularly useful in the enterprise domain, where extracting emergent community structure on enterprise social media can help in forming new collaborative teams, in expertise discovery, and in the long term reorganization of enterprises based on collaboration patterns. There are several unique challenges: (a) In social media, the context of user actions is constantly changing and coevolving; hence the social context contains time-evolving multidimensional relations. (b) The social context is determined by the available system features and is unique in each social media platform; hence the analysis of such data needs to flexibly incorporate various system features. In this article we propose MetaFac (MetaGraph Factorization), a framework that extracts community structures from dynamic, multidimensional social contexts and interactions. Our work has three key contributions: (1) metagraph, a novel relational hypergraph representation for modeling multirelational and multidimensional social data; (2) an efficient multirelational factorization method for community extraction on a given metagraph; (3) an online method to handle time-varying relations through incremental metagraph factorization. Extensive experiments on real-world social data collected from an enterprise and the public Digg social media Web site suggest that our technique is scalable and is able to extract meaningful communities from social media contexts. We illustrate the usefulness of our framework through two prediction tasks: (1) in the enterprise dataset, the task is to predict users’ future interests on tag usage, and (2) in the Digg dataset, the task is to predict users’ future interests in voting and commenting on Digg stories. Our prediction significantly outperforms baseline methods (including aspect model and tensor analysis), indicating the promising direction of using metagraphs for handling time-varying social relational contexts.
international conference on multimedia and expo | 2009
Munmun De Choudhury; Hari Sundaram; Yu-Ru Lin; Ajita John; Doree Duncan Seligmann
In this paper we develop a recommendation framework to connect image content with communities in online social media. The problem is important because users are looking for useful feedback on their uploaded content, but finding the right community for feedback is challenging for the end user. Social media are characterized by both content and community. Hence, in our approach, we characterize images through three types of features: visual features, user generated text tags, and social interaction (user communication history in the form of comments). A recommendation framework based on learning a latent space representation of the groups is developed to recommend the most likely groups for a given image. The model was tested on a large corpus of Flickr images comprising 15,689 images. Our method outperforms the baseline method, with a mean precision 0.62 and mean recall 0.69. Importantly, we show that fusing image content, text tags with social interaction features outperforms the case of only using image content or tags.
ACM Transactions on Multimedia Computing, Communications, and Applications | 2012
Ryan P. Spicer; Yu-Ru Lin; Aisling Kelliher; Hari Sundaram
Presentation support tools, such as Microsoft PowerPoint, pose challenges both in terms of creating linear presentations from complex data and fluidly navigating such linear structures when presenting to diverse audiences. NextSlidePlease is a slideware application that addresses these challenges using a directed graph structure approach for authoring and delivering multimedia presentations. The application combines novel approaches for searching and analyzing presentation datasets, composing meaningfully structured presentations, and efficiently delivering material under a variety of time constraints. We introduce and evaluate a presentation analysis algorithm intended to simplify the process of authoring dynamic presentations, and a time management and path selection algorithm that assists users in prioritizing content during the presentation process. Results from two comparative user studies indicate that the directed graph approach promotes the creation of hyperlinks, the consideration of connections between content items, and a richer understanding of the time management consequences of including and selecting presentation material.
Proceedings of the IEEE | 2012
Hari Sundaram; Lexing Xie; Munmun De Choudhury; Yu-Ru Lin; Apostol Natsev
This paper reviews the state of the art and some emerging issues in research areas related to pattern analysis and monitoring of web-based social communities. This research area is important for several reasons. First, the presence of near-ubiquitous low-cost computing and communication technologies has enabled people to access and share information at an unprecedented scale. The scale of the data necessitates new research for making sense of such content. Furthermore, popular websites with sophisticated media sharing and notification features allow users to stay in touch with friends and loved ones; these sites also help to form explicit and implicit social groups. These social groups are an important source of information to organize and to manage multimedia data. In this article, we study how media-rich social networks provide additional insight into familiar multimedia research problems, including tagging and video ranking. In particular, we advance the idea that the contextual and social aspects of media are as important for successful multimedia applications as is the media content. We examine the inter-relationship between content and social context through the prism of three key questions. First, how do we extract the context in which social interactions occur? Second, does social interaction provide value to the media object? Finally, how do social media facilitate the repurposing of shared content and engender cultural memes? We present three case studies to examine these questions in detail. In the first case study, we show how to discover structure latent in the social media data, and use the discovered structure to organize Flickr photo streams. In the second case study, we discuss how to determine the interestingness of conversations—and of participants—around videos uploaded to YouTube. Finally, we show how the analysis of visual content, in particular tracing of content remixes, can help us understand the relationship among YouTube participants. For each case, we present an overview of recent work and review the state of the art. We also discuss two emerging issues related to the analysis of social networks—robust data sampling and scalable data analysis.