Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Rucong is active.

Publication


Featured researches published by Yu Rucong.


Advances in Atmospheric Sciences | 2004

An Eddy-Permitting Oceanic General Circulation Model and Its Preliminary Evaluation

Liu Hailong; Zhang Xuehong; Li Wei; Yu Yongqiang; Yu Rucong

An eddy-permitting, quasi-global oceanic general circulation model, LICOM (LASG/IAP (State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics) Climate System Ocean Model), with a uniform grid of 0.5° × 0.5° is established. Forced by wind stresses from Hellerman and Rosenstain (1983), a 40-yr integration is conducted with sea surface temperature and salinity being restored to the Levitus 94 datasets. The evaluation of the annual mean climatology of the LICOM control run shows that the large-scale circulation can be well reproduced. A comparison between the LICOM control run and a parallel integration of L30T63, which has the same framework but a coarse resolution, is also made to confirm the impact of resolution on the model performance. On account of the reduction of horizontal viscosity with the enhancement of the horizontal resolution, LICOM improves the simulation with respect to not only the intensity of the large scale circulations, but also the magnitude and structure of the Equatorial Undercurrent and South Equatorial Current. Taking advantage of the fine grid size, the pathway of the Indonesian Throughflow (ITF) is better represented in LICOM than in L30T63. The transport of ITF in LICOM is more convergent in the upper layer. As a consequence, the Indian Ocean tends to get warmer in LICOM. The poleward heat transports for both the global and individual basins are also significantly improved in LICOM. A decomposed analysis indicates that the transport due to the barotropic gyre, which primarily stands for the barotropic effect of the western boundary currents, plays a crucial role in making the difference.


Advances in Atmospheric Sciences | 1994

A Two-Step Shape-Preserving Advection Scheme

Yu Rucong

This paper proposes a new two—step non—oscillatory shape—preserving positive definite finite difference advection transport scheme, which merges the advantages of small dispersion error in the simple first-order upstream scheme and small dissipation error in the simple second-order Lax-Wendroff scheme and is completely different from most of present positive definite advection schemes which are based on revising the upstream scheme results. The proposed scheme is much less time consuming than present shape—preserving or non-oscillatory advection transport schemes and produces results which are comparable to the results obtained from the present more complicated schemes. Elementary tests are also presented to examine the behavior of the scheme.


Advances in Atmospheric Sciences | 2003

The performance of atmospheric component model R42L9 of GOALS/LASG

Wu Tongwen; Liu Ping; Wang Zaizhi; Liu Yimin; Yu Rucong; Wu Guoxiong

This paper examines the performance of an atmospheric general circulation model (AGCM) developed at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP). It is a spectral model truncated at R42(2.8125°long×1.66°lat) resolution and with nine vertical levels, and referred to as R42L9/LASG hereafter. It is also the new version of atmospheric component model R15L9 of the global ocean-atmosphere-land system (GOALS/LASG). A 40-year simulation in which the model is forced with the climatological monthly mean sea surface temperature is compared with the 40-year (1958–97) U.S. National Center for Environmental Prediction (NCEP) global reanalysis and the 22-year (1979–2000) Xie-Arkin monthly precipitation climatology. The mean DJF and JJA geographical distributions of precipitation, sea level pressure, 500-hPa geopotential height, 850-hPa and 200-hPa zonal wind, and other fields averaged for the last 30-year integration of the R42L9 model are analyzed. Results show that the model reproduces well the observed basic patterns, particularly precipitation over the East Asian region. Comparing the new model with R15L9/LASG, the old version with coarse resolution (nearly 7.5°long×4.5°lat), shows an obvious improvement in the simulation of regional climate, especially precipitation. The weaknesses in simulation and future improvements of the model are also discussed.


Advances in Atmospheric Sciences | 2004

Simulation of Asian monsoon seasonal variations with climate model R42L9/LASG

Wang Zaizhi; Wu Guoxiong; Wu Tongwen; Yu Rucong

The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979–1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP) II in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model’s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exist in this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.


Advances in Atmospheric Sciences | 2003

The impact of low-level cloud over the eastern subtropical Pacific on the “Double ITCZ” in LASG FGCM-0

Dai Fushan; Yu Rucong; Zhang Xuehong; Yu Yongqiang; Li Jianglong

Like many other coupled models, the Flexible coupled General Circulation Model (FGCM-0) suffers from the spurious “Double ITCZ”. In order to understand the “Double ITCZ” in FGCM-0, this study first examines the low-level cloud cover and the bulk stability of the low troposphere over the eastern subtropical Pacific simulated by the National Center for Atmospheric Research (NCAR) Community Climate Model version 3 (CCM3), which is the atmosphere component model of FGCM-0. It is found that the bulk stability of the low troposphere simulated by CCM3 is very consistent with the one derived from the National Center for Environmental Prediction (NCEP) reanalysis, but the simulated low-level cloud cover is much less than that derived from the International Satellite Cloud Climatology Project (ISCCP) D2 data. Based on the regression equations between the low-level cloud cover from the ISCCP data and the bulk stability of the low troposphere derived from the NCEP reanalysis, the parameterization scheme of low-level cloud in CCM3 is modified and used in sensitivity experiments to examine the impact of low-level cloud over the eastern subtropical Pacific on the spurious “Double ITCZ” in FGCM-0. Results show that the modified scheme causes the simulated low-level cloud cover to be improved locally over the cold oceans. Increasing the low-level cloud cover off Peru not only significantly alleviates the SST warm biases in the southeastern tropical Pacific, but also causes the equatorial cold tongue to be strengthened and to extend further west. Increasing the low-level cloud fraction off California effectively reduces the SST warm biases in ITCZ north of the equator. In order to examine the feedback between the SST and low-level cloud cover off Peru, one additional sensitivity experiment is performed in which the SST over the cold ocean off Peru is restored. It shows that decreasing the SST results in similar impacts over the wide regions from the southeastern tropical Pacific northwestwards to the western/central equatorial Pacific as increasing the low-level cloud cover does.


Advances in Atmospheric Sciences | 2005

Impacts of an improved low-level cloud scheme on the eastern Pacific ITCZ-cold tongue complex

Dai Fushan; Yu Rucong; Zhang Xuehong; Yu Yongqiang; Li Jianglong

A statistically-based low-level cloud parameterization scheme is introduced, modified, and applied in the Flexible coupled General Circulation Model (FGCM-0). It is found that the low-level cloud scheme makes improved simulations of low-level cloud fractions and net surface shortwave radiation fluxes in the subtropical eastern oceans off western coasts in the model. Accompanying the improvement in the net surface shortwave radiation fluxes, the simulated distribution of SSTs is more reasonably asymmetrical about the equator in the tropical eastern Pacific, which suppresses, to some extent, the development of the double ITCZ in the model. Warm SST biases in the ITCZ north of the equator are more realistically reduced, too. But the equatorial cold tongue is strengthened and extends further westward, which reduces the precipitation rate in the western equatorial Pacific but increases it in the ITCZ north of the equator in the far eastern Pacific. It is demonstrated that the low-level cloud-radiation feedback would enhance the cooperative feedback between the equatorial cold tongue and the ITCZ. Based on surface layer heat budget analyses, it is demonstrated that the reduction of SSTs is attributed to both the thermodynamic cooling process modified by the increase of cloud fractions and the oceanic dynamical cooling processes associated with the strengthened surface wind in the eastern equatorial Pacific, but it is mainly attributed to oceanic dynamical cooling processes associated with the strengthening of surface wind in the central and western equatorial Pacific.


Advances in Atmospheric Sciences | 1995

Application of a shape-preserving advection scheme to the moisture equation in an E-grid regional forecast model

Yu Rucong

This paper presents a methodology which is very useful to design shape-preserving advection finite difference scheme on general E-grid horizontal arrangement of variables through introducing a two-step shape-preserving positive definite advection scheme in the moisture equation of the LASG-REM (LASG regional E-grid eta-coordinate forecast model). By trial-forecasting six local heavy raincases, the efficiency of the shape-preserving advection scheme in practical application has been examined. The LASG-REM with the shape-preserving advection scheme has a good forecasting ability for local precipitation.


Advances in Atmospheric Sciences | 2005

AREM Simulations of Cloud Features over Eastern China in February 2001

Li Yunying; Yu Rucong; Xu Youping; Zhou Tianjun

Based on the simulations of cloud features in February 2001 by the regional numerical weather prediction model—Advanced Regional Eta-coordinate Model (AREM), the dynamic and thermodynamic conditions for middle cloud formation over eastern China are studied. Diagnostic analysis partly confirms the previous suggestion that the middle stratiform clouds downstream of the Tibetan Plateau are maintained by the frictional and blocking effects of the plateau. In addition, it is found that the temperature inversion at plateau height over eastern China generated by the warm air advected from the plateau provides a favorable thermodynamic condition for middle clouds. Both diurnal variations of the mid-level divergence and the inversion over eastern China, which are determined by the atmospheric boundary activity over the Tibetan Plateau, dominate the cloud diurnal cycle. The middle cloud amount decreases and the cloud top falls in the daytime, but reverses at night. The comparison of cloud features between the simulations and the observations also proves that the AREM can well capture the distinctive continental stratiform cloud features downstream of the Tibetan Plateau.


Advances in Atmospheric Sciences | 2004

Mean climatic characteristics in high northern latitudes in an ocean-sea ice-atmosphere coupled model

Liu Xiying; Zhang Xuehong; Yu Yongqiang; Yu Rucong

Emphasizing the model’s ability in mean climate reproduction in high northern latitudes, results from an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model can simulate the main characteristics of annual mean global sea surface temperature and sea level pressure well, but the extent of ice coverage produced in the Southern Hemisphere is not large enough. The main distribution characteristics of simulated sea level pressure and temperature at 850 hPa in high northern latitudes agree well with their counterparts in the NCEP reanalysis dataset, and the model can reproduce the Arctic Oscillation (AO) mode successfully. The simulated seasonal variation of sea ice in the Northern Hemisphere is rational and its main distribution features in winter agree well with those from observations. But the ice concentration in the sea ice edge area close to the Eurasian continent in the inner Arctic Ocean is much larger than the observation. There are significant interannual variation signals in the simulated sea ice concentration in winter in high northern latitudes and the most significant area lies in the Greenland Sea, followed by the Barents Sea. All of these features agree well with the results from observations.Emphasizing the model’s ability in mean climate reproduction in high northern latitudes, results from an ocean-sea ice-atmosphere coupled model are analyzed. It is shown that the coupled model can simulate the main characteristics of annual mean global sea surface temperature and sea level pressure well, but the extent of ice coverage produced in the Southern Hemisphere is not large enough. The main distribution characteristics of simulated sea level pressure and temperature at 850 hPa in high northern latitudes agree well with their counterparts in the NCEP reanalysis dataset, and the model can reproduce the Arctic Oscillation (AO) mode successfully. The simulated seasonal variation of sea ice in the Northern Hemisphere is rational and its main distribution features in winter agree well with those from observations. But the ice concentration in the sea ice edge area close to the Eurasian continent in the inner Arctic Ocean is much larger than the observation. There are significant interannual variation signals in the simulated sea ice concentration in winter in high northern latitudes and the most significant area lies in the Greenland Sea, followed by the Barents Sea. All of these features agree well with the results from observations.


Advances in Atmospheric Sciences | 2004

An evaluation of the effects of cloud parameterization in the R42L9 GCM

Wu Tongwen; Wang Zaizhi; Liu Yimin; Yu Rucong; Wu Guoxiong

Cloud is one of the uncertainty factors influencing the performance of a general circulation model (GCM). Recently, the State Key Laboratory of Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics (LASG/IAP) has developed a new version of a GCM (R42L9). In this work, roles of cloud parameterization in the R42L9 are evaluated through a comparison between two 20-year simulations using different cloud schemes. One scheme is that the cloud in the model is diagnosed from relative humidity and vertical velocity, and the other one is that diagnostic cloud is replaced by retrieved cloud amount from the International Satellite Cloud Climatology Project (ISCCP), combined with the amounts of high-, middle-, and low-cloud and heights of the cloud base and top from the NCEP. The boreal winter and summer seasonal means, as well as the annual mean, of the simulated top-of-atmosphere shortwave radiative flux, surface energy fluxes, and precipitation are analyzed in comparison with the observational estimates and NCEP reanalysis data. The results show that the scheme of diagnostic cloud parameterization greatly contributes to model biases of radiative budget and precipitation. When our derived cloud fractions are used to replace the diagnostic cloud amount, the top-of-atmosphere and surface radiation fields are better estimated as well as the spatial pattern of precipitation. The simulations of the regional precipitation, especially over the equatorial Indian Ocean in winter and the Asia-western Pacific region in summer, are obviously improved.

Collaboration


Dive into the Yu Rucong's collaboration.

Top Co-Authors

Avatar

Yu Yongqiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhang Xuehong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhou Tianjun

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Wei

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liu Hailong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liu Yimin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wang Zaizhi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wu Guoxiong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wu Tongwen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dai Fushan

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge