Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Shimoyama is active.

Publication


Featured researches published by Yu Shimoyama.


FEBS Journal | 2008

Characterization of the glutamyl endopeptidase from Staphylococcus aureus expressed in Escherichia coli

Takayuki K. Nemoto; Yuko Ohara-Nemoto; Toshio Ono; Takeshi Kobayakawa; Yu Shimoyama; Shigenobu Kimura; Takashi Takagi

V8 protease, a member of the glutamyl endopeptidase I family, of Staphylococcus aureus V8 strain (GluV8) is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. In this study, an Escherichia coli expression system for GluV8, as well as its homologue from Staphylococcus epidermidis (GluSE), was developed, and the roles of the prosegments and two specific amino acid residues, Val69 and Ser237, were investigated. C‐terminal His6‐tagged proGluSE was successfully expressed from the full‐length sequence as a soluble form. By contrast, GluV8 was poorly expressed by the system as a result of autodegradation; however, it was efficiently obtained by swapping its preprosegment with that of GluSE, or by the substitution of four residues in the GluV8 prosequence with those of GluSE. The purified proGluV8 was converted to the mature form in vitro by thermolysin treatment. The prosegment was essential for the suppression of proteolytic activity, as well as for the correct folding of GluV8, indicating its role as an intramolecular chaperone. Furthermore, the four amino acid residues at the C‐terminus of the prosegment were sufficient for both of these roles. In vitro mutagenesis revealed that Ser237 was essential for proteolytic activity, and that Val69 was indispensable for the precise cleavage by thermolysin and was involved in the proteolytic reaction itself. This is the first study to express quantitatively GluV8 in E. coli, and to demonstrate explicitly the intramolecular chaperone activity of the prosegment of glutamyl endopeptidase I.


Journal of Biological Chemistry | 2011

Asp- and Glu-specific novel dipeptidyl peptidase 11 of Porphyromonas gingivalis ensures utilization of proteinaceous energy sources.

Yuko Ohara-Nemoto; Yu Shimoyama; Shigenobu Kimura; Asako Kon; Hiroshi Haraga; Toshio Ono; Takayuki K. Nemoto

Background: Dipeptidyl peptidases (DPPs) are required for protein metabolism in Porphyromonas gingivalis. Results: Asp/Glu-specific novel DPP (DPP11) was discovered and characterized. Conclusion: DPP11 ensures efficient degradation of oligopeptide substrates in Gram-negative anaerobic rods. Significance: This observation suggests further variation of substrate specificity in the DPP members. Porphyromonas gingivalis and Porphyromonas endodontalis, asaccharolytic black-pigmented anaerobes, are predominant pathogens of human chronic and periapical periodontitis, respectively. They incorporate di- and tripeptides from the environment as carbon and energy sources. In the present study we cloned a novel dipeptidyl peptidase (DPP) gene of P. endodontalis ATCC 35406, designated as DPP11. The DPP11 gene encoded 717 amino acids with a molecular mass of 81,090 Da and was present as a 75-kDa form with an N terminus of Asp22. A homology search revealed the presence of a P. gingivalis orthologue, PGN0607, that has been categorized as an isoform of authentic DPP7. P. gingivalis DPP11 was exclusively cell-associated as a truncated 60-kDa form, and the gene ablation retarded cell growth. DPP11 specifically removed dipeptides from oligopeptides with the penultimate N-terminal Asp and Glu and has a P2-position preference to hydrophobic residues. Optimum pH was 7.0, and the kcat/Km value was higher for Asp than Glu. Those activities were lost by substitution of Ser652 in P. endodontalis and Ser655 in P. gingivalis DPP11 to Ala, and they were consistently decreased with increasing NaCl concentration. Arg670 is a unique amino acid completely conserved in all DPP11 members distributed in the genera Porphyromonas, Bacteroides, and Parabacteroides, whereas this residue is converted to Gly in all authentic DPP7 members. Substitution analysis suggested that Arg670 interacts with an acidic residue of the substrate. Considered to preferentially utilize acidic amino acids, DPP11 ensures efficient degradation of oligopeptide substrates in these Gram-negative anaerobic rods.


Journal of Biological Chemistry | 2014

Identification and Characterization of Prokaryotic Dipeptidyl-peptidase 5 from Porphyromonas gingivalis

Yuko Ohara-Nemoto; Shakh M. A. Rouf; Mariko Naito; Amie Yanase; Fumi Tetsuo; Toshio Ono; Takeshi Kobayakawa; Yu Shimoyama; Shigenobu Kimura; Koji Nakayama; Keitarou Saiki; Kiyoshi Konishi; Takayuki K. Nemoto

Background: Dipeptidyl-peptidases (DPPs) are key factors for amino acid metabolism and bacterial growth of asaccharolytic Porphyromonas gingivalis. Results: DPP5, which is specific for Ala and hydrophobic residues, is expressed in the periplasmic space of P. gingivalis. Conclusion: DPP5 was discovered in prokaryotes for the first time. Significance: The discovery of DPP5 expands understanding of amino acid and energy metabolism in prokaryotes. Porphyromonas gingivalis, a Gram-negative asaccharolytic anaerobe, is a major causative organism of chronic periodontitis. Because the bacterium utilizes amino acids as energy and carbon sources and incorporates them mainly as dipeptides, a wide variety of dipeptide production processes mediated by dipeptidyl-peptidases (DPPs) should be beneficial for the organism. In the present study, we identified the fourth P. gingivalis enzyme, DPP5. In a dpp4-7-11-disrupted P. gingivalis ATCC 33277, a DPP7-like activity still remained. PGN_0756 possessed an activity indistinguishable from that of the mutant, and was identified as a bacterial orthologue of fungal DPP5, because of its substrate specificity and 28.5% amino acid sequence identity with an Aspergillus fumigatus entity. P. gingivalis DPP5 was composed of 684 amino acids with a molecular mass of 77,453, and existed as a dimer while migrating at 66 kDa on SDS-PAGE. It preferred Ala and hydrophobic residues, had no activity toward Pro at the P1 position, and no preference for hydrophobic P2 residues, showed an optimal pH of 6.7 in the presence of NaCl, demonstrated Km and kcat/Km values for Lys-Ala-MCA of 688 μm and 11.02 μm−1 s−1, respectively, and was localized in the periplasm. DPP5 elaborately complemented DPP7 in liberation of dipeptides with hydrophobic P1 residues. Examinations of DPP- and gingipain gene-disrupted mutants indicated that DPP4, DPP5, DPP7, and DPP11 together with Arg- and Lys-gingipains cooperatively liberate most dipeptides from nutrient oligopeptides. This is the first study to report that DPP5 is expressed not only in eukaryotes, but also widely distributed in bacteria and archaea.


Biological Chemistry | 2008

Homologous and heterologous expression and maturation processing of extracellular glutamyl endopeptidase of Staphylococcus epidermidis.

Yuko Ohara-Nemoto; Toshio Ono; Yu Shimoyama; Shigenobu Kimura; Takayuki K. Nemoto

Abstract The extracellular serine endopeptidase GluSE (EC 3.4.21.19) is considered to be one of the virulence factors of Staphylococcus epidermidis. The present study investigated maturation processing of native GluSE and that heterologously expressed in Escherichia coli. In addition to the 28-kDa mature protease, small amounts of proenzymes with molecular masses of 32, 30, and 29 kDa were identified in the extracellular and cell wall-associated fractions. We defined the pre (M1-A27)- and pro (K28-S66)-segments, and found that processing at the E32-S33 and D48-I49 bonds was responsible for production of the 30- and 29-kDa intermediates, respectively. The full-length form of C-terminally His-tagged GluSE was purified as three proenzymes equivalent to the native ones. These molecules possessing an entire or a part of the pro-segment were proteolytically latent and converted to a mature 28-kDa form by thermolysin cleavage at the S66-V67 bond. Mutation of the essential amino acid S235 suggested auto-proteolytic production of the 30- and 29-kDa intermediates. Furthermore, an undecapeptide (I56-S66) of the truncated pro-segment not only functions as an inhibitor of the protease but also facilitates thermolysin processing. These findings could offer clues to the molecular mechanism involved in the regulation of proteolytic activity of pathogenic proteases secreted from S. epidermidis.


BMC Oral Health | 2014

Effects of tongue cleaning on bacterial flora in tongue coating and dental plaque: a crossover study.

Miki Matsui; Naoyuki Chosa; Yu Shimoyama; Kentaro Minami; Shigenobu Kimura; Mitsuo Kishi

BackgroundThe effects of tongue cleaning on reconstruction of bacterial flora in dental plaque and tongue coating itself are obscure. We assessed changes in the amounts of total bacteria as well as Fusobacterium nucleatum in tongue coating and dental plaque specimens obtained with and without tongue cleaning.MethodsWe conducted a randomized examiner-blind crossover study using 30 volunteers (average 23.7 ± 3.2 years old) without periodontitis. After dividing randomly into 2 groups, 1 group was instructed to clean the tongue, while the other did not. On days 1 (baseline), 3, and 10, tongue coating and dental plaque samples were collected after recording tongue coating score (Winkel tongue coating index: WTCI). After a washout period of 3 weeks, the same examinations were performed with the subjects allocated to the alternate group. Genomic DNA was purified from the samples and applied to SYBR® Green-based real-time PCR to quantify the amounts of total bacteria and F. nucleatum.ResultsAfter 3 days, the WTCI score recovered to baseline, though the amount of total bacteria in tongue coating was significantly lower as compared to the baseline. In plaque samples, the bacterial amounts on day 3 and 10 were significantly lower than the baseline with and without tongue cleaning. Principal component analysis showed that variations of bacterial amounts in the tongue coating and dental plaque samples were independent from each other. Furthermore, we found a strong association between amounts of total bacteria and F. nucleatum in specimens both.ConclusionsTongue cleaning reduced the amount of bacteria in tongue coating. However, the cleaning had no obvious contribution to inhibit dental plaque formation. Furthermore, recovery of the total bacterial amount induced an increase in F. nucleatum in both tongue coating and dental plaque. Thus, it is recommended that tongue cleaning and tooth brushing should both be performed for promoting oral health.


FEBS Open Bio | 2013

Phenylalanine 664 of dipeptidyl peptidase (DPP) 7 and Phenylalanine 671 of DPP11 mediate preference for P2-position hydrophobic residues of a substrate

Shakh M. A. Rouf; Yuko Ohara-Nemoto; Toshio Ono; Yu Shimoyama; Shigenobu Kimura; Takayuki K. Nemoto

Dipeptidyl peptidases (DPPs) are crucial for the energy metabolism in Porphyromonas gingivalis, a Gram‐negative proteolytic and asaccharolytic anaerobic rod causing chronic periodontitis. Three DPPs, DPPIV specific for Pro, DPP7 for hydrophobic residues and DPP11 for Asp/Glu at the P1 position, are expressed in the bacterium. Like DPP7, DPP11 belongs to the S46 protease family, and they share 38.7% sequence identity. Although DPP11 is preferential for hydrophobic residues at the P2 position, it has been reported that DPP7 has no preference at the P2 position. In the present study, we defined the detailed P2 substrate preference of DPP7 and the amino acid residue responsible for the specificity. DPP7 most efficiently hydrolyzed Met‐Leu‐dipeptidyl‐4‐methylcoumaryl‐7‐amide (MCA) carrying hydrophobic residues at the P1 position with k cat/Km of 10.62 ± 2.51 μM−1 s−1, while it unexpectedly cleaved substrates with hydrophilic (Gln, Asn) or charged (Asp, Arg) residues. Examination with 21 dipeptidyl MCA demonstrated that DPP7‐peptidase activity was dependent on hydrophobicity of the P2‐ as well as P1‐position residue, thus it correlated best with the sum of the hydrophobicity index of P1‐ and P2‐amino acid residues. Hydrophobicity of the P1 and P2 positions ensured efficient enzyme catalysis by increasing k cat and lowering Km values, respectively. Substitution of hydrophobic residues conserved in the S46 DPP7/DPP11 family to Ala revealed that Phe664 of DPP7 and Phe671 of DPP11 primarily afforded hydrophobic P2 preference. A modeling study suggested that Phe664 and Gly666 of DPP7 and Phe671 and Arg673 of DPP11 being associated with the P2‐ and P1‐position residues, respectively, are located adjacent to the catalytic Ser648/Ser655. The present results expand the substrate repertoire of DPP7, which ensures efficient degradation of oligopeptides in asaccharolytic bacteria.


Biological Chemistry | 2009

Determination of three amino acids causing alteration of proteolytic activities of staphylococcal glutamyl endopeptidases.

Takayuki K. Nemoto; Toshio Ono; Yu Shimoyama; Shigenobu Kimura; Yuko Ohara-Nemoto

Abstract Staphylococcus aureus, Staphylococcus epidermidis, and Staphylococcus warneri secrete glutamyl endopeptidases, designated GluV8, GluSE, and GluSW, respectively. The order of their protease activities is GluSE<GluSW<<GluV8. In the present study, we investigated the mechanism that causes these differences. Expression of chimeric proteins between GluV8 and GluSE revealed that the difference is primarily attributed to amino acid residues 170–195, which define the intrinsic protease activity, and additionally to residues 119–169, which affect the proteolytic sensitivity. Among nine substitutions present in residues 170–195 of the three proteases, the substitutions at positions 185, 188, and 189 were responsible for the changes in their activities, and the combination of W185, V188, and P189, which naturally occurs in GluV8, exerts the highest protease activity. W185 and P189 were indispensable for full activity, but V188 could be replaced by hydrophobic amino acids. These three amino acid residues appear to create a substrate-binding pocket together with the catalytic triad and the N-terminal V1, and therefore define the K m values of the proteases. We also describe a method to produce a chimeric form of GluSE and GluV8 that is resistant to proteolysis, and therefore possesses 4-fold higher activity than the wild-type recombinant GluV8.


Biological Chemistry | 2010

Amino acid residues modulating the activities of staphylococcal glutamyl endopeptidases.

Toshio Ono; Yuko Ohara-Nemoto; Yu Shimoyama; Hisami Okawara; Takeshi Kobayakawa; Tomomi T. Baba; Shigenobu Kimura; Takayuki K. Nemoto

Abstract The glutamyl endopeptidase family of enzymes from staphylococci has been shown to be important virulence determinants of pathogenic family members, such as Staphylococcus aureus. Previous studies have identified the N-terminus and residues from positions 185–195 as potentially important regions that determine the activity of three members of the family. Cloning and sequencing of the new family members from Staphylococcus caprae (GluScpr) and Staphylococcus cohnii (GluScoh) revealed that the N-terminal Val residue is maintained in all family members. Mutants of the GluV8 enzyme from S. aureus with altered N-terminal residues, including amino acids with similar properties, were inactive, indicating that the Val residue is specifically required at the N-terminus of this enzyme family in order for them to function correctly. Recombinant GluScpr was found to have peptidase activity intermediate between GluV8 and GluSE from Staphylococcus epidermis and to be somewhat less specific in its substrate requirements than other family members. The 185–195 region was found to contribute to the activity of GluScpr, although other regions of the enzyme must also play a role in defining the activity. Our results strongly indicate the importance of the N-terminal and the 185–195 region in the activity of the glutamyl endopeptidases of staphylococci.


Analytical Biochemistry | 2008

An Escherichia coli expression system for glutamyl endopeptidases optimized by complete suppression of autodegradation

Toshio Ono; Takayuki K. Nemoto; Yu Shimoyama; Shigenobu Kimura; Yuko Ohara-Nemoto

V8 protease (GluV8), a member of the glutamyl endopeptidase I family isolated from the V8 strain of Staphylococcus aureus, is widely used for proteome analysis because of its unique substrate specificity and resistance to detergents. We recently developed an Escherichia coli expression system for the production of GluV8 based on a technique that suppresses the autoproteolysis--the use of the prosequence of its homologue (GluSE) from Staphylococcus epidermidis as a chimeric form or the introduction of four substitutions in the prosequence of GluV8. In the current study, we refined this technique through five amino acid substitutions within the prosequence of GluV8 for complete suppression of the autodegradation. As a result, the recovery of GluV8 proform was enhanced to 20 fg/cell, which was comparable to the level of a constitutive inactive form of GluV8, indicating complete suppression of the autoproteolysis. This mutated propeptide was also effective for the expression of the mature sequence of the glutamyl endopeptidase from Staphylococcus warneri. The recombinant proteins were successfully converted to their active forms through a common cleavage mechanism mediated by thermolysin in vitro. This strategy may shed light on the way for the expression of the proteases that have been scarcely produced in E. coli to date.


Journal of Biological Chemistry | 2016

A Porphyromonas gingivalis Periplasmic Novel Exopeptidase, Acylpeptidyl Oligopeptidase, Releases N-Acylated Di- and Tripeptides from Oligopeptides.

Takayuki K. Nemoto; Yuko Ohara-Nemoto; Gustavo Arruda Bezerra; Yu Shimoyama; Shigenobu Kimura

Exopeptidases, including dipeptidyl- and tripeptidylpeptidase, are crucial for the growth of Porphyromonas gingivalis, a periodontopathic asaccharolytic bacterium that incorporates amino acids mainly as di- and tripeptides. In this study, we identified a novel exopeptidase, designated acylpeptidyl oligopeptidase (AOP), composed of 759 amino acid residues with active Ser615 and encoded by PGN_1349 in P. gingivalis ATCC 33277. AOP is currently listed as an unassigned S9 family peptidase or prolyl oligopeptidase. Recombinant AOP did not hydrolyze a Pro-Xaa bond. In addition, although sequence similarities to human and archaea-type acylaminoacyl peptidase sequences were observed, its enzymatic properties were apparently distinct from those, because AOP scarcely released an N-acyl-amino acid as compared with di- and tripeptides, especially with N-terminal modification. The kcat/Km value against benzyloxycarbonyl-Val-Lys-Met-4-methycoumaryl-7-amide, the most potent substrate, was 123.3 ± 17.3 μm−1 s−1, optimal pH was 7–8.5, and the activity was decreased with increased NaCl concentrations. AOP existed predominantly in the periplasmic fraction as a monomer, whereas equilibrium between monomers and oligomers was observed with a recombinant molecule, suggesting a tendency of oligomerization mediated by the N-terminal region (Met16–Glu101). Three-dimensional modeling revealed the three domain structures (residues Met16–Ala126, which has no similar homologue with known structure; residues Leu127–Met495 (β-propeller domain); and residues Ala496–Phe736 (α/β-hydrolase domain)) and further indicated the hydrophobic S1 site of AOP in accord with its hydrophobic P1 preference. AOP orthologues are widely distributed in bacteria, archaea, and eukaryotes, suggesting its importance for processing of nutritional and/or bioactive oligopeptides.

Collaboration


Dive into the Yu Shimoyama's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Minoru Sasaki

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Haraga

Iwate Medical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge