Yu Shin Kim
Johns Hopkins University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu Shin Kim.
Nature | 2003
Sang Jeong Kim; Yu Shin Kim; Joseph P. Yuan; Ronald S. Petralia; Paul F. Worley; David J. Linden
Group I metabotropic glutamate receptors (consisting of mGluR1 and mGluR5) are G-protein-coupled neurotransmitter receptors that are found in the perisynaptic region of the postsynaptic membrane. These receptors are not activated by single synaptic volleys but rather require bursts of activity. They are implicated in many forms of neural plasticity including hippocampal long-term potentiation and depression, cerebellar long-term depression, associative learning, and cocaine addiction. When activated, group I mGluRs engage two G-protein-dependent signalling mechanisms: stimulation of phospholipase C and activation of an unidentified, mixed-cation excitatory postsynaptic conductance (EPSC), displaying slow activation, in the plasma membrane. Here we report that the mGluR1-evoked slow EPSC is mediated by the TRPC1 cation channel. TRPC1 is expressed in perisynaptic regions of the cerebellar parallel fibre–Purkinje cell synapse and is physically associated with mGluR1. Manipulations that interfere with TRPC1 block the mGluR1-evoked slow EPSC in Purkinje cells; however, fast transmission mediated by AMPA-type glutamate receptors remains unaffected. Furthermore, co-expression of mGluR1 and TRPC1 in a heterologous system reconstituted a mGluR1-evoked conductance that closely resembles the slow EPSC in Purkinje cells.
Nature Neuroscience | 2013
Liang Han; Chao Ma; Qin Liu; Hao Jui Weng; Yiyuan Cui; Zongxiang Tang; Yu Shin Kim; Hong Nie; Lintao Qu; Kush N. Patel; Zhe Li; Benjamin McNeil; Shaoqiu He; Yun Guan; Bo Xiao; Robert H. LaMotte; Xinzhong Dong
Itch-specific neurons have been sought for decades. The existence of such neurons has been doubted recently as a result of the observation that itch-mediating neurons also respond to painful stimuli. We genetically labeled and manipulated MrgprA3+ neurons in the dorsal root ganglion (DRG) and found that they exclusively innervated the epidermis of the skin and responded to multiple pruritogens. Ablation of MrgprA3+ neurons led to substantial reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions, whereas pain sensitivity remained intact. Notably, mice in which TRPV1 was exclusively expressed in MrgprA3+ neurons exhibited itch, but not pain, behavior in response to capsaicin. Although MrgprA3+ neurons were sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.
The Journal of Neuroscience | 2007
Melissa R. Regan; Yanhua H. Huang; Yu Shin Kim; Margaret Dykes-Hoberg; Lin Jin; Andrew M. Watkins; Dwight E. Bergles; Jeffrey D. Rothstein
Glutamate transporters regulate excitatory neurotransmission and prevent glutamate-mediated excitotoxicity in the CNS. To better study the cellular and temporal dynamics of the expression of these transporters, we generated bacterial artificial chromosome promoter Discosoma red [glutamate–aspartate transporter (GLAST)] and green fluorescent protein [glutamate transporter-1 (GLT-1)] reporter transgenic mice. Analysis of these mice revealed a differential activation of the transporter promoters not previously appreciated. GLT-1 promoter activity in the adult CNS is almost completely restricted to astrocytes, often and unexpectedly in a nonoverlapping pattern with GLAST. Spinal cord GLT-1 promoter reporter, protein density, and physiology were 10-fold lower than in brain, suggesting a possible mechanism for regional sensitivity seen in disease. The GLAST promoter is active in both radial glia and many astrocytes in the developing CNS but is downregulated in most astrocytes as the mice mature. In the adult CNS, the highest GLAST promoter activity was observed in radial glia, such as those located in the subgranular layer of the dentate gyrus. The continued expression of GLAST by these neural progenitors raises the possibility that GLAST may have an unanticipated role in regulating their behavior. In addition, GLAST promoter activation was observed in oligodendrocytes in white matter throughout many (e.g., spinal cord and corpus callosum), but not all (e.g., cerebellum), CNS fiber tracts. Overall, these studies of GLT-1 and GLAST promoter activity, protein expression, and glutamate uptake revealed a close correlation between transgenic reporter signals and uptake capacity, indicating that these mice provide the means to monitor the expression and regulation of glutamate transporters in situ.
Neuron | 2014
Yu Shin Kim; Yuxia Chu; Liang Han; Man Li; Zhe Li; Pamela Colleen LaVinka; Shuohao Sun; Zongxiang Tang; Kyoungsook Park; Michael J. Caterina; Ke Ren; Ronald Dubner; Feng Wei; Xinzhong Dong
The peripheral terminals of primary nociceptive neurons play an essential role in pain detection mediated by membrane receptors like TRPV1, a molecular sensor of heat and capsaicin. However, the contribution of central terminal TRPV1 in the dorsal horn to chronic pain has not been investigated directly. Combining primary sensory neuron-specific GCaMP3 imaging with a trigeminal neuropathic pain model, we detected robust neuronal hyperactivity in injured and uninjured nerves in the skin, soma in trigeminal ganglion, and central terminals in the spinal trigeminal nucleus. Extensive TRPV1 hyperactivity was observed in central terminals innervating all dorsal horn laminae. The central terminal TRPV1 sensitization was maintained by descending serotonergic (5-HT) input from the brainstem. Central blockade of TRPV1 or 5-HT/5-HT3A receptors attenuated central terminal sensitization, excitatory primary afferent inputs, and mechanical hyperalgesia in the territories of injured and uninjured nerves. Our results reveal central mechanisms facilitating central terminal sensitization underlying chronic pain.
Pain | 2015
Zixuan Pang; Takashi Sakamoto; Vinod Tiwari; Yu Shin Kim; Fei Yang; Xinzhong Dong; Ali D. Güler; Yun Guan; Michael J. Caterina
Abstract The skin epidermis is densely innervated by peripheral sensory nerve endings. Nociceptive neurons, whose terminals are in close contact with epidermal keratinocytes, can be activated directly by noxious physical and chemical stimuli to trigger pain. However, whether keratinocytes can signal acutely to sensory nerve terminals to initiate pain in vivo remains unclear. Here, using the keratin 5 promoter to selectively express the capsaicin receptor TRPV1 in keratinocytes of TRPV1-knockout mice, we achieved specific stimulation of keratinocytes with capsaicin. Using this approach, we found that keratinocyte stimulation was sufficient to induce strong expression of the neuronal activation marker, c-fos, in laminae I and II of the ipsilateral spinal cord dorsal horn and to evoke acute paw-licking nocifensive behavior and conditioned place aversion. These data provide direct evidence that keratinocyte stimulation is sufficient to evoke acute nociception-related responses.
The Journal of Neuroscience | 2009
Yu Shin Kim; Jung Hoon Shin; F. Scott Hall; David J. Linden
Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current. This current, called depolarization-induced slow current (DISC), is triggered by Ca influx in the Purkinje cell and is attenuated by a blocker of vesicular fusion. Previous work in other brain regions, such as the substantia nigra and ventral tegmental area, has shown that dopamine can be released from dendrites to produce paracrine and autocrine signaling. Here, we test the hypothesis that postsynaptic release of dopamine and autocrine activation of dopamine receptors is involved in DISC. Light immunohistochemistry showed that D3 dopamine receptors, vesicular monoamine transporter type 2 (VMAT2), and dopamine plasma membrane transporters (DATs) were all expressed in cerebellar Purkinje cells. However, their expression was strongest in the gyrus region of cerebellar lobules IX and X. Comparison of DISC across lobules revealed that it was weak in the anterior portions of the cerebellum (lobules II, V, and VI) and strong in lobules IX and X. DISC was blocked by dopamine receptor antagonists (haloperidol, clozapine, eticlopride, and SCH23390). Likewise, DISC was strongly attenuated by inhibitors of VMAT (reserpine and tetrabenazine) and DAT (GBR12909 and rimcazole). These drugs did not produce DISC attenuation through blockade of depolarization-evoked Purkinje cell Ca transients. Purkinje cells in cerebellar slices derived from DAT-null mice expressed DISC, but this DISC ran down at a significantly higher rate than littermate controls. Together, these results suggest that strong Purkinje cell depolarization produces Ca-dependent release of vesicular postsynaptic dopamine that then excites Purkinje cells in an autocrine manner.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Jung Hoon Shin; Yu Shin Kim; David J. Linden
In recent years, it has become clear that, in addition to conventional anterograde transmission, signaling in neural circuits can occur in a retrograde manner. This suggests the additional possibility that postsynaptic release of neurotransmitter might be able to act in an autocrine fashion. Here, we show that brief depolarization of a cerebellar Purkinje cell triggers a slow inward current. This depolarization-induced slow current (DISC) is attenuated by antagonists of mGluR1 or TRP channels. DISC is eliminated by a mixture of voltage-sensitive Ca2+ channel blockers and is mimicked by a brief climbing fiber burst. DISC is attenuated by an inhibitor of vesicular glutamate transporters or of vesicular fusion. These data suggest that Ca2+-dependent postsynaptic fusion of glutamate-loaded vesicles evokes a slow inward current produced by activation of postsynaptic mGluR1, thereby constituting a useful form of feedback regulation.
FEBS Letters | 2000
Yu Shin Kim; Sanghwa Han
Reaction of Cu,Zn‐superoxide dismutase (SOD1) and hydrogen peroxide generates a putative oxidant SOD‐Cu2+‐OH that can inactivate the enzyme and oxidize 5,5′‐dimethyl‐1‐pyrroline‐N‐oxide (DMPO) to DMPO‐OH. In the presence of nitric oxide (NO), the SOD1/H2O2 system is known to produce peroxynitrite (ONOO−). In contrast to the proposed cytotoxicity of NO conferred by ONOO−, we report here a protective role of NO in the H2O2‐induced inactivation of SOD1. In a dose‐dependent manner, NO suppressed formation of DMPO‐OH and inactivation of the enzyme. Fragmentation of the enzyme was not affected by NO. Bicarbonate retarded formation of ONOO−, suggesting that NO competes with bicarbonate for the oxidant SOD‐Cu2+‐OH. We propose that NO protects SOD1 from H2O2‐induced inactivation by reducing SOD‐Cu2+‐OH to the active SOD‐Cu2+ with concomitant production of NO+ which reacts with H2O2 to give ONOO−.
Journal of Neurophysiology | 2013
Yu Shin Kim; Eunchai Kang; Yuichi Makino; Sungjin Park; Jung Hoon Shin; Hongjun Song; Pierre Launay; David J. Linden
Brief strong depolarization of cerebellar Purkinje cells produces a slow inward cation current [depolarization-induced slow current (DISC)]. Previous work has shown that DISC is triggered by voltage-sensitive Ca influx in the Purkinje cell and is attenuated by blockers of vesicular loading and fusion. Here, we have sought to characterize the ion channel(s) underlying the DISC conductance. While the brief depolarizing steps that triggered DISC were associated with a large Ca transient, the onset of DISC current corresponded only with the Ca transient decay phase. Furthermore, substitution of external Na with the impermeant cation N-methyl-d-glucamine produced a complete and reversible block of DISC, suggesting that the DISC conductance was not Ca permeant. Transient receptor potential cation channel, subfamily M, members 4 (TRPM4) and 5 (TRPM5) are nonselective cation channels that are opened by Ca transients but do not flux Ca. They are expressed in Purkinje cells of the posterior cerebellum, where DISC is large, and, in these cells, DISC is strongly attenuated by nonselective blockers of TRPM4/5. However, measurement of DISC currents in Purkinje cells derived from TRPM4 null, TRPM5 null, and double null mice as well as wild-type mice with TRPM4 short hairpin RNA knockdown showed a partial attenuation with 35-46% of current remaining. Thus, while the DISC conductance is Ca triggered, Na permeant, and Ca impermeant, suggesting a role for TRPM4 and TRPM5, these ion channels are not absolutely required for DISC.
Biological Chemistry | 2000
Yu Shin Kim; Sanghwa Han
Abstract Catalase binds nitric oxide (NO) to generate ferricatalase-NO, an inhibited form of the enzyme. Superoxide (O2 −) is also an inactivator of the enzyme. We found, however, that O2 − efficiently converted the inhibited ferricatalase-NO to the active ferricatalase without producing detectable intermediates. The reaction slowed down when O2 − was disproportionated to H2O2 and O2 by superoxide dismutase, but H2O2 could displace the heme-bound NO slowly to regenerate ferricatalase. Reactivation was observed even under simultaneous generation of NO and O2 − suggesting that ferricatalase-NO reacts with O2 − fast enough to compete with the rapid reaction of O2 − and NO. Formation of peroxynitrite by the simultaneous generation of NO and O2 − was only partially inhibited by ferricatalase, presumably due to slow binding of NO to catalase in comparison with the reaction of NO and O2 −.