Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu Togashi is active.

Publication


Featured researches published by Yu Togashi.


American Journal of Physiology-endocrinology and Metabolism | 2013

Metformin prevents liver tumorigenesis induced by high-fat diet in C57Bl/6 Mice

Kazuki Tajima; Akinobu Nakamura; Jun Shirakawa; Yu Togashi; Kazuki Orime; Koichiro Sato; Hideaki Inoue; Mitsuyo Kaji; Eri Sakamoto; Yuzuru Ito; Kaztaka Aoki; Yoji Nagashima; Tatsuya Atsumi; Yasuo Terauchi

The prevalence of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is increasing with the growing epidemics of obesity and diabetes. NAFLD encompasses a clinicopathologic spectrum of disease ranging from isolated hepatic steatosis to NASH, which is a more aggressive form of fatty liver disease, to cirrhosis and, finally, hepatocellular carcinoma (HCC). The exact mechanism behind the development of HCC in NASH remains unclear; however, it has been established that hepatic steatosis is the important risk factor in the development of HCC. Metformin has recently drawn attention because of its potential antitumor effect. Here, we investigated the effects of metformin on high-fat diet (HFD)-induced liver tumorigenesis, using a mouse model of NASH and liver tumor. Metformin prevented long-term HFD-induced liver tumorigenesis in C57Bl/6 mice. Of note, metformin failed to protect against liver tumorigenesis in mice that had already begun to develop NAFLD. Metformin improved short-term HFD-induced fat accumulation in the liver, associated with the suppression of adipose tissue inflammation. Collectively, these results suggest that metformin may prevent liver tumorigenesis via suppression of liver fat accumulation in the early stage, before the onset of NAFLD, which seems to be associated with a delay in the development of inflammation of the adipose tissue.


Journal of Biological Chemistry | 2011

Protective Effects of Dipeptidyl Peptidase-4 (DPP-4) Inhibitor against Increased β Cell Apoptosis Induced by Dietary Sucrose and Linoleic Acid in Mice with Diabetes

Jun Shirakawa; Kikuko Amo; Hirokazu Ohminami; Kazuki Orime; Yu Togashi; Yuzuru Ito; Kazuki Tajima; Megumi Koganei; Hajime Sasaki; Eiji Takeda; Yasuo Terauchi

Chronic exposure to high glucose and fatty acid levels caused by dietary sugar and fat intake induces β cell apoptosis, leading to the exacerbation of type 2 diabetes. Oleic acid and linoleic acid are two major dietary fatty acids, but their effects in diabetes are unclear. We challenged β cell-specific glucokinase haploinsufficient (Gck+/−) mice with a diet containing sucrose and oleic acid (SO) or sucrose and linoleic acid (SL) and analyzed β cell apoptosis. In Gck+/− but not wild-type mice, SL significantly decreased the β cell mass and β cell proportion in islet cells arising from increased apoptosis to a greater degree than did SO. The mRNA expression of SREBP-1c was significantly higher, and that of E-cadherin was significantly lower in the islets of Gck+/− mice fed SL compared with mice fed SO. We next evaluated monotherapy with desfluorositagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, in these mouse groups. DPP-4 inhibitor protected against β cell apoptosis, restored the β cell mass, and normalized islet morphology in Gck+/− mice fed SL. DPP-4 inhibition normalized the changes in the islet expression of SREBP-1c and E-cadherin mRNA induced by the SL diet. Furthermore, linoleic acid induced β cell apoptosis to a greater degree in the presence of high glucose levels than in the presence of low glucose levels in vitro in islets and MIN6 cells, whereas a GLP-1 receptor agonist prevented apoptosis. In conclusion, SL exacerbated β cell apoptosis in diabetic Gck+/− mice but not in euglycemic wild-type mice, and DPP-4 inhibition protected against these effects.


Diabetes | 2013

Glucokinase Activation Ameliorates ER Stress–Induced Apoptosis in Pancreatic β-Cells

Jun Shirakawa; Yu Togashi; Eri Sakamoto; Mitsuyo Kaji; Kazuki Tajima; Kazuki Orime; Hideaki Inoue; Naoto Kubota; Takashi Kadowaki; Yasuo Terauchi

The derangement of endoplasmic reticulum (ER) homeostasis triggers β-cell apoptosis, leading to diabetes. Glucokinase upregulates insulin receptor substrate 2 (IRS-2) expression in β-cells, but the role of glucokinase and IRS-2 in ER stress has been unclear. In this study, we investigated the impact of glucokinase activation by glucokinase activator (GKA) on ER stress in β-cells. GKA administration improved β-cell apoptosis in Akita mice, a model of ER stress–mediated diabetes. GKA increased the expression of IRS-2 in β-cells, even under ER stress. Both glucokinase-deficient Akita mice and IRS-2–deficient Akita mice exhibited an increase in β-cell apoptosis, compared with Akita mice. β-cell–specific IRS-2–overexpressing (βIRS-2-Tg) Akita mice showed less β-cell apoptosis than Akita mice. IRS-2–deficient islets were vulnerable, but βIRS-2-Tg islets were resistant to ER stress–induced apoptosis. Meanwhile, GKA regulated the expressions of C/EBP homologous protein (CHOP) and other ER stress–related genes in an IRS-2–independent fashion in islets. GKA suppressed the expressions of CHOP and Bcl2-associated X protein (Bax) and protected against β-cell apoptosis under ER stress in an ERK1/2-dependent, IRS-2–independent manner. Taken together, GKA ameliorated ER stress–mediated apoptosis by harmonizing IRS-2 upregulation and the IRS-2–independent control of apoptosis in β-cells.


Endocrinology | 2012

Impact of the Dipeptidyl Peptidase-4 Inhibitor Vildagliptin on Glucose Tolerance and β-Cell Function and Mass in Insulin Receptor Substrate-2-Knockout Mice Fed a High-Fat Diet

Koichiro Sato; Akinobu Nakamura; Jun Shirakawa; Tomonori Muraoka; Yu Togashi; Kazuaki Shinoda; Kazuki Orime; Naoto Kubota; Takashi Kadowaki; Yasuo Terauchi

Type 2 diabetes is characterized by diminished pancreatic β-cell mass and function. Glucagon-like peptide-1 has been reported to increase islet cell proliferation and reduce apoptosis of β-cells in rodents. In this study, we explored the effect of chronic administration of the dipeptidyl peptidase-4 inhibitor vildagliptin on glucose tolerance, β-cell function, and β-cell mass in Irs2-knockout (Irs2(-/-)) mice. Wild-type and Irs2(-/-) mice were fed a high-fat diet for 20 wk, with or without vildagliptin. In both genotypes of mice, vildagliptin significantly decreased the area under the curve (0-120 min) of blood glucose and increased the insulin response to glucose during the oral glucose tolerance test. In the oral glucose tolerance test performed 1 d after discontinuation of vildagliptin administration, the area under the curve (0-120 min) of blood glucose was still significantly decreased and the insulin response to glucose was significantly increased in the Irs2(-/-) mice treated with vildagliptin as compared with the values in the mice not treated with vildagliptin. Histochemical analysis of the pancreatic islets revealed significant increase of the β-cell mass and decrease in the proportion of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive β-cells but no significant increase of the bromodeoxyuridine incorporation in Irs2(-/-) mice treated with vildagliptin. Our results suggest that vildagliptin improved glucose tolerance and increased the β-cell mass by reducing β-cell apoptosis in the Irs2(-/-) mice, and that the reduction of β-cell apoptosis by vildagliptin was independent of the Irs2 expression in the cells.


Diabetologia | 2012

Control of beta cell function and proliferation in mice stimulated by small-molecule glucokinase activator under various conditions

Akinobu Nakamura; Yu Togashi; Kazuki Orime; Koichiro Sato; Jun Shirakawa; Mitsuru Ohsugi; Naoto Kubota; Takashi Kadowaki; Yasuo Terauchi

Aims/hypothesisWe investigated changes in the expression of genes involved in beta cell function and proliferation in mouse islets stimulated with glucokinase activator (GKA) in order to elucidate the mechanisms by which GKA stimulates beta cell function and proliferation.MethodsIslets isolated from mice were used to investigate changes in the expression of genes related to beta cell function and proliferation stimulated by GKA. In addition, Irs2 knockout (Irs2−/−) mice on a high-fat diet or a high-fat diet containing GKA were used to investigate the effects of GKA on beta cell proliferation in vivo.ResultsIn wild-type mice, Irs2 and Pdx1 expression was increased by GKA. In Irs2−/− mice, GKA administration increased the glucose-stimulated secretion of insulin and Pdx1 expression, but not beta cell proliferation. It was particularly noteworthy that oxidative stress inhibited the upregulation of the Irs2 and Pdx1 genes induced by GKA. Moreover, whereas neither GKA alone nor exendin-4 alone upregulated the expression of Irs2 and Pdx1 in the islets of db/db mice, prior administration of exendin-4 to the mice caused GKA to increase the expression of these genes.Conclusions/interpretationGKA-stimulated IRS2 production affected beta cell proliferation but not beta cell function. Oxidative stress diminished the effects of GKA on the changes in expression of genes involved in beta cell function and proliferation. A combination of GKA and an incretin-related agent might therefore be effective in therapy.


Endocrinology | 2012

Effects of Liraglutide on β-Cell-Specific Glucokinase-Deficient Neonatal Mice

Jun Shirakawa; Ritsuko Tanami; Yu Togashi; Kazuki Tajima; Kazuki Orime; Naoto Kubota; Takashi Kadowaki; Yoshio Goshima; Yasuo Terauchi

The glucagon-like peptide-1 receptor agonist liraglutide is used to treat diabetes. A hallmark of liraglutide is the glucose-dependent facilitation of insulin secretion from pancreatic β-cells. In β-cells, the glycolytic enzyme glucokinase plays a pivotal role as a glucose sensor. However, the role of glucokinase in the glucose-dependent action of liraglutide remains unknown. We first examined the effects of liraglutide on glucokinase haploinsufficient (Gck(+/-)) mice. Single administration of liraglutide significantly improved glucose tolerance in Gck(+/-) mice without increase of insulin secretion. We also assessed the effects of liraglutide on the survival rates, metabolic parameters, and histology of liver or pancreas of β-cell-specific glucokinase-deficient (Gck(-/-)) newborn mice. Liraglutide reduced the blood glucose levels in Gck(-/-) neonates but failed to prolong survival, and all the mice died within 1 wk. Furthermore, liraglutide did not improve glucose-induced insulin secretion in isolated islets from Gck(-/-) neonates. Liraglutide initially prevented increases in alanine aminotransferase, free fatty acids, and triglycerides in Gck(-/-) neonates but not at 4 d after birth. Liraglutide transiently prevented liver steatosis, with reduced triglyceride contents and elevated glycogen contents in Gck(-/-) neonate livers at 2 d after birth. Liraglutide also protected against reductions in β-cells in Gck(-/-) neonates at 4 d after birth. Taken together, β-cell glucokinase appears to be essential for liraglutide-mediated insulin secretion, but liraglutide may improve glycemic control, steatosis, and β-cell death in a glucokinase-independent fashion.


Diabetes Research and Clinical Practice | 2008

Neither the presence of metabolic syndrome as defined by the IDF guideline nor an increased waist circumference increased the risk of microvascular or macrovascular complications in Japanese patients with type 2 diabetes

Tomoyuki Iwasaki; Yu Togashi; Kenji Ohshige; Masato Yoneda; Koji Fujita; Atsushi Nakajima; Yasuo Terauchi

The aim of this study was to evaluate the relationship between the diagnosis of metabolic syndrome (MetS) or its components and the prevalence of microvascular and macrovascular complications in 130 Japanese type 2 diabetic patients. Out of the 130 patients, 58.5% satisfied the criteria of the MetS as defined by the IDF guideline. The results of logistic regression analysis with adjustment for three variables (age, gender and duration of diabetes) revealed that the presence of MetS as defined by the IDF guideline was not independently related to the presence of proliferative retinopathy, proteinuria, neuropathy, or macrovascular disease in the diabetic patients. The waist circumference per se was not associated with diabetic neuropathy, retinopathy, nephropathy, or macrovascular diseases. These results suggest that neither the presence of MetS, as defined by the IDF guideline, nor the waist circumference was associated with the presence of either microvascular or macrovascular complications in Japanese type 2 diabetic patients.


Endocrinology | 2014

β-Cell proliferation after a partial pancreatectomy is independent of IRS-2 in mice.

Yu Togashi; Jun Shirakawa; Kazuki Orime; Mitsuyo Kaji; Eri Sakamoto; Kazuki Tajima; Hideaki Inoue; Akinobu Nakamura; Yoshihiro Tochino; Yoshio Goshima; Iichiro Shimomura; Yasuo Terauchi

The glucokinase-induced up-regulation of insulin receptor substrate 2 (IRS-2) plays an important role in β-cell adaptive proliferation in response to high-fat diet-induced insulin resistance. This study aimed to investigate the role of IRS-2 in the proliferation of β-cells after a 60% partial pancreatectomy. IRS-2-deficient (IRS-2(-/-)) mice or wild-type mice were subjected to a pancreatectomy (60% partial pancreatectomy) or a sham operation (Sham). The β-cell proliferation and gene expression profiles of the islets were then assessed. Gene expression in islets from pancreatectomized and Sham C57BL/6J male mice was analyzed using a cDNA microarray analysis. To compare with β-cell proliferation induced by a high-fat diet, Gck(+/-) mice subjected to a pancreatectomy were also analyzed. The IRS-2(-/-) mice exhibited β-cell expansion and a significant increase in β-cell proliferation after the pancreatectomy, compared with the Sham group. Although glucose-stimulated insulin secretion from islets was not impaired, IRS-2(-/-) mice manifested severe hyperglycemia after the pancreatectomy. The expression levels of Aurora kinase B, Cyclin A, and Cyclin B1 in the pancreatectomized islets were also enhanced in the IRS-2(-/-) mice. A gene set enrichment analysis suggested an association between the genes that were up-regulated in the pancreatectomized islets and those involved in M phase progression in the cell cycle. β-Cell proliferation after a pancreatectomy was observed even in the Gck(+/-) mice. In conclusion, IRS-2 was not required for β-cell proliferation but might be needed for functional β-cell mass, after a pancreatectomy. A partial pancreatectomy in mice may be an attractive model for the development of new strategy for exploring the unique nature of β-cell proliferation.


Endocrinology | 2014

Effects of the Antitumor Drug OSI-906, a Dual Inhibitor of IGF-1 Receptor and Insulin Receptor, on the Glycemic Control, β-Cell Functions, and β-Cell Proliferation in Male Mice

Jun Shirakawa; Tomoko Okuyama; Eiko Yoshida; Mari Shimizu; Yuka Horigome; Takayuki Tuno; Moe Hayasaka; Shiori Abe; Masahiro Fuse; Yu Togashi; Yasuo Terauchi

The IGF-1 receptor has become a therapeutic target for the treatment of cancer. The efficacy of OSI-906 (linstinib), a dual inhibitor of IGF-1 receptor and insulin receptor, for solid cancers has been examined in clinical trials. The effects of OSI-906, however, on the blood glucose levels and pancreatic β-cell functions have not yet been reported. We investigated the impact of OSI-906 on glycemic control, insulin secretion, β-cell mass, and β-cell proliferation in male mice. Oral administration of OSI-906 worsened glucose tolerance in a dose-dependent manner in the wild-type mice. OSI-906 at a dose equivalent to the clinical daily dose (7.5 mg/kg) transiently evoked glucose intolerance and hyperinsulinemia. Insulin receptor substrate (IRS)-2-deficient mice and mice with diet-induced obesity, both models of peripheral insulin resistance, exhibited more severe glucose intolerance after OSI-906 administration than glucokinase-haploinsufficient mice, a model of impaired insulin secretion. Phloridzin improved the hyperglycemia induced by OSI-906 in mice. In vitro, OSI-906 showed no effect on insulin secretion from isolated islets. After daily administration of OSI-906 for a week to mice, the β-cell mass and β-cell proliferation rate were significantly increased. The insulin signals in the β-cells were apparently unaffected in those mice. Taken together, the results suggest that OSI-906 could exacerbate diabetes, especially in patients with insulin resistance. On the other hand, the results suggest that the β-cell mass may expand in response to chemotherapy with this drug.


Endocrinology | 2013

Trefoil Factor 2 Promotes Cell Proliferation in Pancreatic β-Cells through CXCR-4-Mediated ERK1/2 Phosphorylation

Kazuki Orime; Jun Shirakawa; Yu Togashi; Kazuki Tajima; Hideaki Inoue; Yuzuru Ito; Koichiro Sato; Akinobu Nakamura; Kazutaka Aoki; Yoshio Goshima; Yasuo Terauchi

Decreased β-cell mass is a hallmark of type 2 diabetes, and therapeutic approaches to increase the pancreatic β-cell mass have been expected. In recent years, gastrointestinal incretin peptides have been shown to exert a cell-proliferative effect in pancreatic β-cells. Trefoil factor 2 (TFF2), which is predominantly expressed in the surface epithelium of the stomach, plays a role in antiapoptosis, migration, and proliferation. The TFF family is expressed in pancreatic β-cells, whereas the role of TFF2 in pancreatic β-cells has been obscure. In this study, we investigated the mechanism by which TFF2 enhances pancreatic β-cell proliferation. The effects of TFF2 on cell proliferation were evaluated in INS-1 cells, MIN6 cells, and mouse islets using an adenovirus vector containing TFF2 or a recombinant TFF2 peptide. The forced expression of TFF2 led to an increase in bromodeoxyuridine (BrdU) incorporation in both INS-1 cells and islets, without any alteration in insulin secretion. TFF2 significantly increased the mRNA expression of cyclin A2, D1, D2, D3, and E1 in islets. TFF2 peptide increased ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. A MAPK kinase inhibitor (U0126) abrogated the TFF2 peptide-mediated proliferation of MIN6 cells. A CX-chemokine receptor-4 antagonist also prevented the TFF2 peptide-mediated increase in ERK1/2 phosphorylation and BrdU incorporation in MIN6 cells. These results indicated that TFF2 is involved in β-cell proliferation at least partially via CX-chemokine receptor-4-mediated ERK1/2 phosphorylation, suggesting TFF2 may be a novel target for inducing β-cell proliferation.

Collaboration


Dive into the Yu Togashi's collaboration.

Top Co-Authors

Avatar

Yasuo Terauchi

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Jun Shirakawa

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kazuki Tajima

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kazuki Orime

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Kazutaka Aoki

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Tomoko Okuyama

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Hideaki Inoue

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Koichiro Sato

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Mayu Kyohara

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar

Yuzuru Ito

Yokohama City University

View shared research outputs
Researchain Logo
Decentralizing Knowledge