Yu-Wing Tai
KAIST
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yu-Wing Tai.
international conference on computer vision | 2011
Jaesik Park; Hyeongwoo Kim; Yu-Wing Tai; Michael S. Brown; In So Kweon
This paper describes an application framework to perform high quality upsampling on depth maps captured from a low-resolution and noisy 3D time-of-flight (3D-ToF) camera that has been coupled with a high-resolution RGB camera. Our framework is inspired by recent work that uses nonlocal means filtering to regularize depth maps in order to maintain fine detail and structure. Our framework extends this regularization with an additional edge weighting scheme based on several image features based on the additional high-resolution RGB input. Quantitative and qualitative results show that our method outperforms existing approaches for 3D-ToF upsampling. We describe the complete process for this system, including device calibration, scene warping for input alignment, and even how the results can be further processed using simple user markup.
computer vision and pattern recognition | 2005
Yu-Wing Tai; Jiaya Jia; Chi-Keung Tang
We address the problem of regional color transfer between two natural images by probabilistic segmentation. We use a new expectation-maximization (EM) scheme to impose both spatial and color smoothness to infer natural connectivity among pixels. Unlike previous work, our method takes local color information into consideration, and segment image with soft region boundaries for seamless color transfer and compositing. Our modified EM method has two advantages in color manipulation: first, subject to different levels of color smoothness in image space, our algorithm produces an optimal number of regions upon convergence, where the color statistics in each region can be adequately characterized by a component of a Gaussian mixture model (GMM). Second, we allow a pixel to fall in several regions according to our estimated probability distribution in the EM step, resulting in a transparency-like ratio for compositing different regions seamlessly. Hence, natural color transition across regions can be achieved, where the necessary intra-region and inter-region smoothness are enforced without losing original details. We demonstrate results on a variety of applications including image deblurring, enhanced color transfer, and colorizing gray scale images. Comparisons with previous methods are also presented.
computer vision and pattern recognition | 2010
Yu-Wing Tai; Shuaicheng Liu; Michael S. Brown; Stephen Lin
Edge-directed image super resolution (SR) focuses on ways to remove edge artifacts in upsampled images. Under large magnification, however, textured regions become blurred and appear homogenous, resulting in a super-resolution image that looks unnatural. Alternatively, learning-based SR approaches use a large database of exemplar images for “hallucinating” detail. The quality of the upsampled image, especially about edges, is dependent on the suitability of the training images. This paper aims to combine the benefits of edge-directed SR with those of learning-based SR. In particular, we propose an approach to extend edge-directed super-resolution to include detail from an image/texture example provided by the user (e.g., from the Internet). A significant benefit of our approach is that only a single exemplar image is required to supply the missing detail – strong edges are obtained in the SR image even if they are not present in the example image due to the combination of the edge-directed approach. In addition, we can achieve quality results at very large magnification, which is often problematic for both edge-directed and learning-based approaches.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2011
Yu-Wing Tai; Ping Tan; Michael S. Brown
This paper addresses how to model and correct image blur that arises when a camera undergoes ego motion while observing a distant scene. In particular, we discuss how the blurred image can be modeled as an integration of the clear scene under a sequence of planar projective transformations (i.e., homographies) that describe the cameras path. This projective motion path blur model is more effective at modeling the spatially varying motion blur exhibited by ego motion than conventional methods based on space-invariant blur kernels. To correct the blurred image, we describe how to modify the Richardson-Lucy (RL) algorithm to incorporate this new blur model. In addition, we show that our projective motion RL algorithm can incorporate state-of-the-art regularization priors to improve the deblurred results. The projective motion path blur model, along with the modified RL algorithm, is detailed, together with experimental results demonstrating its overall effectiveness. Statistical analysis on the algorithms convergence properties and robustness to noise is also provided.
computer vision and pattern recognition | 2014
Jiwhan Kim; Dongyoon Han; Yu-Wing Tai; Junmo Kim
In this paper, we introduce a novel technique to automatically detect salient regions of an image via high-dimensional color transform. Our main idea is to represent a saliency map of an image as a linear combination of high-dimensional color space where salient regions and backgrounds can be distinctively separated. This is based on an observation that salient regions often have distinctive colors compared to the background in human perception, but human perception is often complicated and highly nonlinear. By mapping a low dimensional RGB color to a feature vector in a high-dimensional color space, we show that we can linearly separate the salient regions from the background by finding an optimal linear combination of color coefficients in the high-dimensional color space. Our high dimensional color space incorporates multiple color representations including RGB, CIELab, HSV and with gamma corrections to enrich its representative power. Our experimental results on three benchmark datasets show that our technique is effective, and it is computationally efficient in comparison to previous state-of-the-art techniques.
computer vision and pattern recognition | 2008
Yu-Wing Tai; Hao Du; Michael S. Brown; Stephen Lin
We propose a novel approach to reduce spatially varying motion blur using a hybrid camera system that simultaneously captures high-resolution video at a low-frame rate together with low-resolution video at a high-frame rate. Our work is inspired by Ben-Ezra and Nayar who introduced the hybrid camera idea for correcting global motion blur for a single still image. We broaden the scope of the problem to address spatially varying blur as well as video imagery. We also reformulate the correction process to use more information available in the hybrid camera system, as well as iteratively refine spatially varying motion extracted from the low-resolution high-speed camera. We demonstrate that our approach achieves superior results over existing work and can be extended to deblurring of moving objects.
international conference on computer graphics and interactive techniques | 2011
Alex Yong Sang Chia; Shaojie Zhuo; Raj Kumar Gupta; Yu-Wing Tai; Siu-Yeung Cho; Ping Tan; Stephen Lin
Colorization of a grayscale photograph often requires considerable effort from the user, either by placing numerous color scribbles over the image to initialize a color propagation algorithm, or by looking for a suitable reference image from which color information can be transferred. Even with this user supplied data, colorized images may appear unnatural as a result of limited user skill or inaccurate transfer of colors. To address these problems, we propose a colorization system that leverages the rich image content on the internet. As input, the user needs only to provide a semantic text label and segmentation cues for major foreground objects in the scene. With this information, images are downloaded from photo sharing websites and filtered to obtain suitable reference images that are reliable for color transfer to the given grayscale photo. Different image colorizations are generated from the various reference images, and a graphical user interface is provided to easily select the desired result. Our experiments and user study demonstrate the greater effectiveness of this system in comparison to previous techniques.
computer vision and pattern recognition | 2015
Hae-Gon Jeon; Jaesik Park; Gyeongmin Choe; Jinsun Park; Yunsu Bok; Yu-Wing Tai; In So Kweon
This paper introduces an algorithm that accurately estimates depth maps using a lenslet light field camera. The proposed algorithm estimates the multi-view stereo correspondences with sub-pixel accuracy using the cost volume. The foundation for constructing accurate costs is threefold. First, the sub-aperture images are displaced using the phase shift theorem. Second, the gradient costs are adaptively aggregated using the angular coordinates of the light field. Third, the feature correspondences between the sub-aperture images are used as additional constraints. With the cost volume, the multi-label optimization propagates and corrects the depth map in the weak texture regions. Finally, the local depth map is iteratively refined through fitting the local quadratic function to estimate a non-discrete depth map. Because micro-lens images contain unexpected distortions, a method is also proposed that corrects this error. The effectiveness of the proposed algorithm is demonstrated through challenging real world examples and including comparisons with the performance of advanced depth estimation algorithms.
IEEE Transactions on Pattern Analysis and Machine Intelligence | 2010
Yu-Wing Tai; Hao Du; Michael S. Brown; Stephen Lin
We describe a novel approach to reduce spatially varying motion blur in video and images using a hybrid camera system. A hybrid camera is a standard video camera that is coupled with an auxiliary low-resolution camera sharing the same optical path but capturing at a significantly higher frame rate. The auxiliary video is temporally sharper but at a lower resolution, while the lower frame-rate video has higher spatial resolution but is susceptible to motion blur. Our deblurring approach uses the data from these two video streams to reduce spatially varying motion blur in the high-resolution camera with a technique that combines both deconvolution and super-resolution. Our algorithm also incorporates a refinement of the spatially varying blur kernels to further improve results. Our approach can reduce motion blur from the high-resolution video as well as estimate new high-resolution frames at a higher frame rate. Experimental results on a variety of inputs demonstrate notable improvement over current state-of-the-art methods in image/video deblurring.
computer vision and pattern recognition | 2011
Rei Kawakami; Yasuyuki Matsushita; John Wright; Moshe Ben-Ezra; Yu-Wing Tai; Katsushi Ikeuchi
Hyperspectral imaging is a promising tool for applications in geosensing, cultural heritage and beyond. However, compared to current RGB cameras, existing hyperspectral cameras are severely limited in spatial resolution. In this paper, we introduce a simple new technique for reconstructing a very high-resolution hyperspectral image from two readily obtained measurements: A lower-resolution hyper-spectral image and a high-resolution RGB image. Our approach is divided into two stages: We first apply an unmixing algorithm to the hyperspectral input, to estimate a basis representing reflectance spectra. We then use this representation in conjunction with the RGB input to produce the desired result. Our approach to unmixing is motivated by the spatial sparsity of the hyperspectral input, and casts the unmixing problem as the search for a factorization of the input into a basis and a set of maximally sparse coefficients. Experiments show that this simple approach performs reasonably well on both simulations and real data examples.