Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yu-Ying Lai is active.

Publication


Featured researches published by Yu-Ying Lai.


Advanced Materials | 2013

Influences of the Non-Covalent Interaction Strength on Reaching High Solid-State Order and Device Performance of a Low Bandgap Polymer with Axisymmetrical Structural Units

Jyun-Fong Jheng; Yu-Ying Lai; Jhong-Sian Wu; Yi-Hsiang Chao; Chien-Lung Wang; Chain-Shu Hsu

A high organic field-effect transistor mobility (0.29 cm(2) V(-1) s(-1) ) and bulk-heterojunction polymer solar cell performance (PCE of 6.82%) have been achieved in a low bandgap alternating copolymer consisting of axisymmetrical structural units, 5,6-difluorobenzo-2,1,3-thiadiazole. Introducing the fluorine substituents enhanced intermolecular interaction and improved the solid-state order, which consequently resulted in the highest device performances among the 2,1,3-thiadiazole-quarterthiophene based alternating copolymers.


Organic Letters | 2013

Synthesis and Molecular Properties of Four Isomeric Dialkylated Angular-Shaped Naphthodithiophenes

Sheng-Wen Cheng; De-Yang Chiou; Yu-Ying Lai; Ruo-Han Yu; Chia-Hao Lee; Yen-Ju Cheng

A new strategy to synthesize 4,9- and 5,10-dialkylated α-aNDTs as well as 4,9- and 5,10-dialkylated β-aNDTs is described. Four isomeric precursors with different dithienyl-ene-diyne arrangements undergo base-induced double 6π-cyclization to construct the central naphthalene cores, leading to the formation of the regiospecific products. These 2,7-distannylated dialkylated aNDT-based monomers can be used for Stille cross-coupling to produce promising conjugated materials for various optoelectronic applications.


Chemical Communications | 2013

A new ladder-type benzodi(cyclopentadithiophene)-based donor–acceptor polymer and a modified hole-collecting PEDOT:PSS layer to achieve tandem solar cells with an open-circuit voltage of 1.62 V

Yung-Lung Chen; Wei-Shun Kao; Che-En Tsai; Yu-Ying Lai; Yen-Ju Cheng; Chain-Shu Hsu

We have developed a new ladder-type conjugated polymer and a robust interconnecting layer (ICL) integrating a hole-collecting m-PEDOT:PSS layer with an electron-collecting ZnO layer. The inverted device using exhibited a high power conversion efficiency (PCE) of 5.76% with a Voc of 0.81 V, a Jsc of 12.82 mA cm(-2), and a FF of 55.5%. The inverted tandem device incorporating the and ICL achieves a Voc of 1.62 V leading to a PCE of 7.08%.


ACS Applied Materials & Interfaces | 2013

Interface Engineering to Enhance the Efficiency of Conventional Polymer Solar Cells by Alcohol-/Water-Soluble C60 Materials Doped with Alkali Carbonates

Yu-Ying Lai; Ping-I Shih; Yi-Peng Li; Che-En Tsai; Jhong-Sian Wu; Yen-Ju Cheng; Chain-Shu Hsu

Two new C60-based n-type materials, EGMC-OH and EGMC-COOH, functionalized with hydrophilic triethylene glycol groups (TEGs), have been synthesized and employed in conventional polymer solar cells. With the assistance of the TEG-based surfactant, EGMC-OH and EGMC-COOH can be dissolved in highly polar solvents to implement the polar/nonpolar orthogonal solvent strategy, forming an electron modification layer (EML) without eroding the underlying active layer. Multilayer conventional solar cells on the basis of ITO/PEDOT:PSS/P3HT:PC61BM/EML/Ca/Al configuration with the insertion of the EGMC-OH and EGMC-COOH EML between the active layer and the electrode have thus been successfully realized by cost-effective solution processing techniques. Moreover, the electron conductivity of the EML can be improved by incorporating alkali carbonates into the EGMC-COOH EML. Compared to the pristine device with a PCE of 3.61%, the devices modified by the Li2CO3-doped EGMC-COOH EML achieved a highest PCE of 4.29%. Furthermore, we demonstrated that the formation of the EGMC-COOH EML can be utilized as a general approach in the fabrication of highly efficient multilayer conventional devices. With the incorporation of the EGMC-COOH doped with 40 wt % Li2CO3, the PCDCTBT-C8:PC71BM-based device exhibited a superior PCE of 4.51%, which outperformed the corresponding nonmodified device with a PCE of 3.63%.


Organic Letters | 2014

Synthesis and molecular properties of tricyclic biselenophene-based derivatives with nitrogen, silicon, germanium, vinylidene, and ethylene bridges.

Yu-Chieh Pao; Yung-Lung Chen; Yen-Ting Chen; Sheng-Wen Cheng; Yu-Ying Lai; Wen-Chia Huang; Yen-Ju Cheng

A new class of biselenophene-based materials including an sp(3)-silicon-bridged diselenosilole (DSS), an sp(3)-germanium-bridged diselenogermole (DSG), and an sp(3)-nitrogen-bridged diselenopyrrole (DSP) as well as an sp(2)-vinylidene-bridged dicyanodiselenofulvene (CDSF), a diacetylenediselenofulvene (ADSF), and a dioctylethylene-bridged benzodiselenophene (BDS) have been successfully synthesized and characterized. The bridging moieties play an important role in determining the optical and electrochemical properties. The six brominated derivatives are ready to construct various biselenophene-based conjugated materials with tunable properties for organic photovoltaics and field effect transistors.


Polymer Chemistry | 2014

Synthesis and morphological studies of a poly(5,6-difluorobenzo-2,1,3-thiadiazole-4,7-diyl-alt-quaterchalcogenophene) copolymer with 7.3% polymer solar cell efficiency

Jhong-Sian Wu; Jyun-Fong Jheng; Jen-Yun Chang; Yu-Ying Lai; Kuan-Yi Wu; Chien-Lung Wang; Chain-Shu Hsu

To obtain a poly(5,6-difluorobenzo-2,1,3-thiadiazole-4,7-diyl-alt-quaterchalcogenophene) (P(FBT-alt-CP4)) copolymer with a small optical band gap (Eg), and to achieve high short-circuit current (Jsc) in the P(FBT-alt-CP4) : PC71BM polymer solar cells (PSCs), P(FBT-alt-Se2Th2), which contains selenophene-2,5-diyl (–Se–) π-bridges, was synthesized. P(FBT-alt-Se2Th2) shows a Eg of 1.56 eV and is strongly aggregated in solution. Wide angle X-ray diffraction (WAXD) and grazing incidence X-ray diffraction (GI-XRD) results revealed the high solid-state order of P(FBT-alt-Se2Th2) and its edge-on orientation on the substrate. It delivered a high hole mobility (μh) of 0.36 cm2 V−1 s−1 in organic field-effect transistors (OFETs). The strong aggregation tendency of P(FBT-alt-Se2Th2) caused large segregation domains in the P(FBT-alt-Se2Th2) : PC71BM thin film, as is seen in the high-resolution transmission electron microscopy (HR-TEM) images. The addition of 8 vol% of 1-chloronaphthalene (1-CN) effectively suppressed the aggregation and led to more homogeneous active layer morphology. The improved morphology enhanced the Jsc of the PSCs. A superior PCE of 7.34% with a Voc of 0.70 V, a Jsc of 15.8 mA cm−2, and a FF of 66.4% was achieved in the inverted P(FBT-alt-Se2Th2) : PC71BM PSCs. The strong aggregation of P(FBT-alt-Se2Th2) is likely related to its more straight conjugated backbone according to the theoretical calculation results of the FBT-alt-Se2Th2 repeat unit.


Journal of Materials Chemistry | 2016

Self-assembled tri-, tetra- and penta-ethylene glycols as easy, expedited and universal interfacial cathode-modifiers for inverted polymer solar cells

Fong-Yi Cao; Yu-Ying Lai; Yung-Lung Chen; Yen-Ju Cheng

Non-conjugated triethylene glycol (3-EG), tetraethylene glycol (4-EG) and pentaethylene glycol (5-EG) are presented as new cathode modification materials to achieve high-performance inverted-PCSs. By spin-coating from a non-chlorinated solvent, these small molecules can self-assemble on ITO via surface coordination and hydrogen bonding to form an ultra-thin layer. Theoretical simulations reveal that the coordination of oxygen atoms in the EG molecules to indium moieties on the ITO surface is the major mechanism in inducing interfacial dipoles, thereby reducing the work function (WF) of ITO for efficient electron collection. Based on the PBDTTT-EFT:PC71BM blend, the bulk heterojunction device using the 5-EG layer exhibited a higher short-circuit current density (Jsc) of 15.27 mA cm−2, fill factor (FF) of 0.69, and power conversion efficiency (PCE) of 8.46%, which are better than those of the corresponding devices using either inorganic ZnO or non-conjugated poly(ethylene oxide) (PEO) as the cathode buffer layer. More importantly, this simple and expedited strategy is also demonstrated to be universally applicable to various p-type conjugated polymers. The EG oligomers with well-defined chemical structures have the advantages of easy availability, simple processability and good device reproducibility, which are crucial keys for future commercialization using large-scale roll-to-roll production.


Journal of Materials Chemistry C | 2015

Triarylamine-based crosslinked hole-transporting material with an ionic dopant for high-performance PEDOT:PSS-free polymer solar cells

Che-En Tsai; Ming-Hung Liao; Yung-Lung Chen; Sheng-Wen Cheng; Yu-Ying Lai; Yen-Ju Cheng; Chain-Shu Hsu

A triarylamine-based material DVTPD containing two styryl groups has been developed. Upon isothermal heating at 180 °C for 30 min, DVTPD can be thermally cross-linked to form a solvent-resistant layer to realize the fabrication of solution-processed multilayer devices. The crosslinked DVTPD (denoted as X-DVTPD) layer possesses not only hole-collecting ability (HOMO = −5.3 eV) but also electron-blocking capability (LUMO = −2.2 eV). By incorporation of an ionic dopant, 4-isopropyl-4′-methyldiphenyliodonium tetrakis(pentafluorophenylborate) (DPITPFB), into the X-DVTPD material (1 : 10 in wt%), a favourable morphology of the dopant/matrix layer was formed and the hole-mobility is significantly improved by three orders of magnitude compared to its non-doped state. This DPITPFB : X-DVTPD (1 : 10 in wt%) layer was employed as the hole-transporting layer to fabricate polymer solar cell devices (PSCs). The EHOMO of the polymer in the active layer relative to the EHOMO of the X-DVTPD (−5.3 eV) governs the hole transportation highly associated with the device performance. The higher-lying EHOMO (−5.0 eV) of P3HT causes a large energy barrier for the hole transportation at the interface, leading to an unsatisfactory efficiency. The EHOMO level of the PTB7 copolymer (−5.15 eV) is closer to −5.3 eV. As a result, the PTB7-based device can achieve 80% of the efficiency obtained from the corresponding PEDOT:PSS-based device. Furthermore, the PBDCPDTFBT copolymer has the same EHOMO (−5.3 eV) with X-DVTPD. Consequently, the PBDCPDTFBT-based device showed a comparable efficiency of 5.3% to the corresponding PEDOT:PSS-based device. More importantly, PNDTDTFBT having the lowest-lying EHOMO of −5.4 eV exhibits superior performance with a high PCE of 6.64%, outperforming its reference PEDOT:PSS-based device. This simple and useful hole-transporting system integrating the crosslinking and doping strategies to replace PEDOT:PSS can be widely used in solution-processed organic electronic devices.


Journal of Organic Chemistry | 2016

Synthesis and Isomeric Effects of Ladder-Type Alkylated Terbenzodithiophene Derivatives

Yung-Lung Chen; Jhih-Yang Hsu; Fang-Yu Lin; Yu-Ying Lai; Hsiao-Chieh Chou; Yen-Ju Cheng

A new class of heptacyclic ladder-type terbenzodithiophene (TBDT) structures merging three fused benzodithophenes was developed. Two TBDT conjugated isomers, named as syn-TBDT and anti-TBDT, where the two thienyl rings in the outmost BDT units are in the syn- and anti-fashion, are designed. Two decyl groups are introduced to their 6,13 and 7,14-positions to form four isomeric 6,13-syn-TBDT, 7,14-syn-TBDT, 6,13-anti-TBDT, and 7,14-anti-TBDT structures which are constructed by the DBU-induced 6-benzannulation involving propargyl-allenyl isomerization of the dieneyne moieties in the corresponding precursors followed by 6π-electrocyclization/aromatization, while isomeric TD-syn-TBDT and TD-anti-TBDT with four decyl groups substituted at 6,7,13,14-positions are synthesized via palladium-catalyzed dialkylacetylene insertion/C-H arylation of the corresponding iodobiaryl precursors. The intrinsic properties can be modulated by molecular manipulation of the main-chain and side-chain isomeric structures. anti-TBDT derivatives exhibit higher melting points, larger bandgaps, stronger intermolecular interactions, and higher mobility than the corresponding syn-TBDT analogues. These molecules can be further utilized as building blocks to make various TBDT-based materials for optoelectronic applications.


ACS Applied Materials & Interfaces | 2017

Bispentafluorophenyl-Containing Additive: Enhancing Efficiency and Morphological Stability of Polymer Solar Cells via Hand-Grabbing-Like Supramolecular Pentafluorophenyl:Fullerene Interactions

Kai-En Hung; Che-En Tsai; Shao-Ling Chang; Yu-Ying Lai; U-Ser Jeng; Fong-Yi Cao; Chain-Shu Hsu; Chun-Jen Su; Yen-Ju Cheng

A new class of additive materials bis(pentafluorophenyl) diesters (BFEs) where the two pentafluorophenyl (C6F5) moieties are attached at the both ends of a linear aliphatic chain with tunable tether lengths (BF5, BF7, and BF13) were designed and synthesized. In the presence of BF7 to restrict the migration of fullerene by hand-grabbing-like supramolecular interactions induced between the C6F5 groups and the surface of fullerene, the P3HT:PC61BM:BF7 device showed stable device characteristics after thermal heating at 150 °C for 25 h. The morphologies of the active layers were systematically investigated by optical microscopy, grazing-incidence small-angle X-ray scattering (GISAXS), and atomic force microscopy. The tether length between the two C6F5 groups plays a pivotal role in controlling the intermolecular attractions. BF13 with a long and flexible tether might form a BF13-fullerene sandwich complex that fails to prevent fullerenes movement and aggregation, while BF5 with too short tether length decreases the possibility of interactions between the C6F5 groups and the fullerenes. BF7 with the optimal tether length has the best ability to stabilize the morphology. In sharp contrast, the nonfluorinated BP7 analogue without C6F5-C60 physical interactions does not have the capability of morphological stabilization, unambiguously revealing the necessity of the C6F5 group. Most importantly, the function of BF7 can be also applied to the high-performance PffBT4BT-2OD:PC71BM system, which exhibited an original PCE of 8.80%. After thermal heating at 85 °C for 200 h, the efficiency of the PffBT4BT-2OD:PC71BM:BF7 device only decreased slightly to 7.73%, maintaining 88% of its original efficiency. To the best of our knowledge, this is the first time that the thermal-driven morphological evolution of the high-performance PffBT4BT-2OD polymer has been investigated, and its morphological stability in the inverted device can be successfully preserved by the incorporation of BF7. This research also demonstrates that BF7 is not only effective with PC61BM but also to PC71BM.

Collaboration


Dive into the Yu-Ying Lai's collaboration.

Top Co-Authors

Avatar

Yen-Ju Cheng

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chain-Shu Hsu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Che-En Tsai

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Fong-Yi Cao

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jhih-Yang Hsu

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Sheng-Wen Cheng

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Wei-Wei Liang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Chien-Lung Wang

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Yung-Lung Chen

National Chiao Tung University

View shared research outputs
Top Co-Authors

Avatar

Jhong-Sian Wu

National Chiao Tung University

View shared research outputs
Researchain Logo
Decentralizing Knowledge