Yuan Feng Lin
Taipei Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuan Feng Lin.
The Journal of Pathology | 2015
Tsung Chieh Lin; Yu Peng Liu; Yung Chieh Chan; Chia Yi Su; Yuan Feng Lin; Shih Lan Hsu; Chung Shi Yang; Michael Hsiao
Ghrelin is an appetite‐regulating molecule that promotes growth hormone (GH) release and food intake through growth hormone secretagogue receptor (GHS‐R). Recently, high ghrelin levels have been detected in various types of human cancer. Ghrelin expression is observed in proximal and distal renal tubules, where renal cell carcinoma (RCC) arises. However, whether ghrelin is up‐regulated and promotes renal cell carcinogenesis remains obscure. In this study, we observed that ghrelin was highly expressed in renal tumours, especially in metastatic RCC. In addition, high ghrelin levels correlated with poor outcome, lymph node and distant metastasis. The addition of ghrelin promoted the migration ability of RCC cell lines 786–0, ACHN and A‐498. Furthermore, knockdown of ghrelin expression reduced in vitro migration and in vivo metastasis, suggesting a requirement for ghrelin accumulation in the microenvironment for RCC metastasis. Analysis of microarray signatures using Ingenuity Pathway Analysis (IPA) and MetaCore pointed to the potential regulation by ghrelin of Snail, a transcriptional repressor of E‐cadherin. We further observed that Ghrelin increased the expression, nuclear translocation and promoter‐binding activity of Snail. Snail silencing blocked the ghrelin‐mediated effects on E‐cadherin repression and cell migration. Snail–E‐cadherin regulation was mediated by GHS‐R‐triggered Akt phosphorylation at Ser473 and Thr308. Pretreatment with PI3K inhibitors, LY294002 and wortmannin, as well as Akt siRNA, decreased ghrelin‐induced Akt phosphorylation, Snail promoter binding activity and migration. Taken together, our findings indicate that ghrelin can activate Snail function via the GHS‐R–PI3K–Akt axis, which may contribute to RCC metastasis. The microarray raw data were retrieved from the Cancer Genome Atlas (TCGA) [KIRC gene expression (IlluminaHiSeq) dataset]. Copyright
Oncotarget | 2015
Jeng Shou Chang; Chia Yi Su; Wen Hsuan Yu; Wei Jiunn Lee; Yu Peng Liu; Tsung Ching Lai; Yi Hua Jan; Yi Fang Yang; Chia-Ning Shen; Jin-Yuh Shew; Jean Lu; Chih Jen Yang; Ming Shyan Huang; Pei Jung Lu; Yuan Feng Lin; Min-Liang Kuo; Kuo-Tai Hua; Michael Hsiao
G-protein-coupled receptor kinase interacting protein 1 (GIT1) is participated in cell movement activation, which is a fundamental process during tissue development and cancer progression. GIT1/PIX forming a functional protein complex that contributes to Rac1/Cdc42 activation, resulting in increasing cell mobility. Although the importance of Rac1/Cdc42 activation is well documented in cancer aggressiveness, the clinical importance of GIT1 remains largely unknown. Here, we investigated the clinical significance of GIT1 expression in non-small-cell lung cancer (NSCLC) and also verified the importance of GIT1-Rac1/Cdc42 axis in stimulating NSCLC cell mobility. The result indicated higher GIT1 expression patients had significantly poorer prognoses in disease-free survival (DFS) and overall survival (OS) compared with lower GIT1 expression patients. Higher GIT1 expression was an independent prognostic factor by multivariate analysis and associated with migration/invasion of NSCLC cells in transwell assay. In vivo studies indicated that GIT1 promotes metastasis of NSCLC cells. Finally, GIT1 was found to stimulate migration/invasion by altering the activity of Rac1/Cdc42 in NSCLC cells. Together, the GIT1 expression is associated with poor prognosis in patients with NSCLC. GIT1 is critical for the invasiveness of NSCLC cells through stimulating the activity of Rac1/Cdc42.
Biosensors and Bioelectronics | 2016
Yung Chieh Chan; Chieh Wei Chen; Ming Hsien Chan; Yu Chan Chang; Wei Min Chang; Li Hsing Chi; Hui Ming Yu; Yuan Feng Lin; Din Ping Tsai; Ru-Shi Liu; Michael Hsiao
Upconversion nanoparticles (UCNPs) have extensive biological-applications because of their bio-compatibility, tunable optical properties and their ability to be excited by infrared radiation. Matrix metalloproteinases (MMPs) play important roles in extracellular matrix remodelling; they are usually found to significantly increase during cancer progression, and these increases may lead to poor patient survival. In this study, we produced a biosensor that can be recognized by MMP2 and then be unravelled by the attached quencher to emit visible light. We used 3.5-nm gold nanoparticles as a quencher that absorbed emission from UCNPs at a wavelength of 540 nm. The biosensor consists of an upconversion nanoparticle, MMP2-recognized polypeptides and quenchers. Here, UCNPs consisting of NaYF4:Yb(3+)/Er(3+) were prepared via a high temperature co-precipitation method while protecting the oleic acid ligand. To improve the biocompatibility and modify the UCNPs with a polypeptide, they were coated with a silica shell and further conjugated with MMP-recognizing polypeptides. The polypeptide has two ends of featuring carboxylic and thiol groups that react with UCNPs and AuNPs, and the resulting nanoparticles were referred to as UCNP@p-Au. According to the in vitro cell viability analysis, UCNP@p-Au exhibited little toxicity and biocompatibility in head and neck cancer cells. Cellular uptake studies showed that the MMP-based biosensor was activated by 980-nm irradiation to emit green light. This MMP-based biosensor may serve as sensitive and specific molecular fluorescent probe in biological-applications.
American Journal of Respiratory and Critical Care Medicine | 2014
Yi Fang Yang; Yi Hua Jan; Yu Peng Liu; Chih Jen Yang; Chia Yi Su; Yu Chan Chang; Tsung Ching Lai; Jean Chiou; Hong Yuan Tsai; Jean Lu; Chia-Ning Shen; Jin-Yuh Shew; Pei Jung Lu; Yuan Feng Lin; Ming Shyan Huang; Michael Hsiao
RATIONALE Metabolic alterations contribute to cancer development and progression. However, the molecular mechanisms relating metabolism to cancer metastasis remain largely unknown. OBJECTIVES To identify a key metabolic enzyme that is aberrantly overexpressed in invasive lung cancer cells and to investigate its functional role and prognostic value in lung cancer. METHODS The differential expression of metabolic enzymes in noninvasive CL1-0 cells and invasive CL1-5 cells was analyzed by a gene expression microarray. The expression of target genes in clinical specimens from patients with lung cancer was examined by immunohistochemistry. Pharmacologic and gene knockdown/overexpression approaches were used to investigate the function of the target gene during invasion and metastasis in vitro and in vivo. The association between the target gene expression and clinicopathologic parameters was further analyzed. Bioinformatic analyses were used to discover the signaling pathways involved in target gene-regulated invasion and migration. MEASUREMENTS AND MAIN RESULTS Squalene synthase (SQS) was up-regulated in CL1-5 cells and in the tumor regions of the lung cancer specimens. Loss of function or knockdown of SQS significantly inhibited invasion/migration and metastasis in cell and animal models and vice versa. High expression of SQS was significantly associated with poor prognosis among patients with lung cancer. Mechanistically, SQS contributed to a lipid-raft-localized enrichment of tumor necrosis factor receptor 1 in a cholesterol-dependent manner, which resulted in the enhancement of nuclear factor-κB activation leading to matrix metallopeptidase 1 up-regulation. CONCLUSIONS Up-regulation of SQS promotes metastasis of lung cancer by enhancing tumor necrosis factor-α receptor 1 and nuclear factor-κB activation and matrix metallopeptidase 1 expression. Targeting SQS may have considerable potential as a novel therapeutic strategy to treat metastatic lung cancer.
Scientific Reports | 2017
Wei Min Chang; Yuan Feng Lin; Chia Yi Su; Hsuan Yu Peng; Yu Chan Chang; Jenn Ren Hsiao; Chi Long Chen; Jang Yang Chang; Yi Shing Shieh; Michael Hsiao; Shine Gwo Shiah
Parathyroid Hormone-Like Hormone (PTHLH) is an autocrine/paracrine ligand that is up-regulated in head and neck squamous cell carcinoma (HNSCC). However, the cellular function and regulatory mechanism in HNSCC remains obscure. We investigated the clinical significance of PTHLH in HNSCC patients, and verified the role of RUNX2/PTHLH axis, which is stimulated HNSCC cell growth. In patients, PTHLH is a poor prognosis marker. PTHLH expression lead to increasing the cell proliferation potential through an autocrine/paracrine role and elevating blood calcium level in Nod-SCID mice. In public HNSCC microarray cohorts, PTHLH is found to be co-expressed with RUNX2. Physiologically, PTHLH is regulated by RUNX2 and also acting as key calcium regulator. However, elevations of calcium concentration also increased the RUNX2 expression. PTHLH, calcium, and RUNX2 form a positive feedback loop in HNSCC. Furthermore, ectopic RUNX2 expression also increased PTHLH expression and promoted proliferation potential through PTHLH expression. Using cDNA microarray analysis, we found PTHLH also stimulated expression of cell cycle regulators, namely CCNA2, CCNE2, and CDC25A in HNSCC cells, and these genes are also up-regulated in HNSCC patients. In summary, our results reveal that PTHLH expression is a poor prognosis marker in HNSCC patients, and RUNX2-PTHLH axis contributes to HNSCC tumor growth.
Molecular Cancer Therapeutics | 2017
Ming Hsien Chien; Wei Min Chang; Wei Jiunn Lee; Yu Chan Chang; Tsung Ching Lai; Derek V. Chan; Rahul Sharma; Yuan Feng Lin; Michael Hsiao
Altered expression of the Fas ligand (FasL)/Fas ratio exhibits a direct impact on the prognosis of cancer patients, and its impairment in cancer cells may lead to apoptosis resistance. Thus, the development of effective therapies targeting the FasL/Fas system may play an important role in the fight against cancer. In this study, we evaluated whether a fusion protein (hcc49scFv-FasL) comprising of the cytotoxicity domain of the FasL fused to a humanized antibody (CC49) against tumor-associated glycoprotein 72, which is expressed on oral squamous cell carcinoma (OSCC), can selectively kill OSCC cells with different FasL/Fas ratios. In clinical samples, the significantly low FasL and high Fas transcripts were observed in tumors compared with normal tissues. A lower FasL/Fas ratio was correlated with a worse prognosis of OSCC patients and higher proliferative and invasive abilities of OSCC cells. The hcc49scFv-FasL showed a selective cytotoxic effect on OSCC cells (Cal-27 and SAS) but not on normal oral keratinocytes cells (HOK) through apoptosis induction. Moreover, SAS cells harboring a lower FasL/Fas ratio than Cal-27 were more sensitive to the cytotoxic effect of hcc49scFv-FasL. Unlike wild-type FasL, hcc49scFv-FasL was not cleaved by matrix metalloproteinases and did not induce nonapoptotic signaling in SAS cells. In vivo, we found that hcc49scFv-FasL drastically reduced the formation of lymph node metastasis and decreased primary tumor growth in SAS orthotopic and subcutaneous xenograft tumor models. Collectively, our data indicate that a tumor-targeting antibody fused to the FasL can be a powerful tool for OSCC treatment, especially in populations with a low FasL/Fas ratio. Mol Cancer Ther; 16(6); 1102–13. ©2017 AACR.
PLOS ONE | 2015
Chia Yi Su; Yu Peng Liu; Chih Jen Yang; Yuan Feng Lin; Jean Chiou; Li Hsing Chi; Jih-Jong Lee; Alex T.H. Wu; Pei Jung Lu; Ming Shyan Huang; Michael Hsiao
Background In lung cancer, uPA, its receptor (uPAR), and the inhibitors PAI-1 and PAI-2 of the plasminogen activator family interact with MMP-2 and MMP-9 of the MMP family to promote cancer progression. However, it remains undetermined which of these markers plays the most important role and may be the most useful indicator to stratify the patients by risk. Methods We determined the individual prognostic value of these 6 markers by analyzing a derivation cohort with 98 non-small cell lung cancer patients by immunohistochemical staining. The correlation between the IHC expression levels of these markers and disease prognosis was investigated, and an immunohistochemical panel for prognostic prediction was subsequently generated through prognostic model analysis. The value of the immunohistochemical panel was then verified by a validation cohort with 91 lung cancer patients. Results In derivation cohort, PAI-2 is the most powerful prognostic factor (HR = 2.30; P = 0.001), followed by MMP-9 (HR = 2.09; P = 0.019) according to multivariate analysis. When combining PAI-2 and MMP-9, the most unfavorable prognostic group (low PAI-2 and high MMP-9 IHC expression levels) showed a 6.40-fold increased risk of a poor prognosis compared to the most favorable prognostic group (high PAI-2 and low MMP-9 IHC expression levels). PAI-2 and MMP-9 IHC panel could more precisely identify high risk patients in both derivation and validation cohort. Conclusions We revealed PAI-2 as the most powerful prognostic marker among PA and MMP protease family even after considering their close relationships with each other. By utilizing a combination of PAI-2 and MMP-9, more precise prognostic information than merely using pathological stage alone can be obtained for lung cancer patients.
Biochemical and Biophysical Research Communications | 2018
Shang Pen Huang; Jean Chiou; Yi Hua Jan; Tsung Ching Lai; Yung Luen Yu; Michael Hsiao; Yuan Feng Lin
Lower grade gliomas (LGGs) have highly diverse clinical phenotypes. The histological grade and type are insufficient to accurately predict the clinical outcomes of patients with LGGs. Therefore, identification of biomarkers that can facilitate the prediction of clinical outcomes in LGGs is urgently needed. Gene expression of LOX has been identified as a biomarker for various cancers. However, the clinical significance of LOX expression in LGGs has not been investigated. In this study, we analyzed the glioma RNA-seq dataset from TCGA (The Cancer Genome atlas) and identified lysyl oxidase (LOX) as a potential biomarker for LGGs. Kaplan-Meier survival analysis revealed that high LOX expression is associated with worse overall survival and recurrence free survival in LGG patients. Besides, high LOX expression is associated with poor response to primary therapy, follow-up treatment, targeted molecular therapy, and radiation therapy. Univariate and multivariate Cox regression analyses further confirmed LOX expression as an independent prognostic factor for LGG patients. Finally, we observed that LOX expression is significantly correlated with EMT (epithelial to mesenchymal transition) and IDH1 status in LGGs. In conclusion, our analyses suggest that LOX expression is a potential biomarker for prognosis and therapeutic response in LGGs.
Oncotarget | 2017
Shang Pen Huang; Yu Chan Chang; Qie Hua Low; Alexander T H Wu; Chi Long Chen; Yuan Feng Lin; Michael Hsiao
There is variation in the survival and therapeutic outcome of patients with glioblastomas (GBMs). Therapy resistance is an important challenge in the treatment of GBM patients. The aim of this study was to identify Temozolomide (TMZ) related genes and confirm their clinical relevance. The TMZ-related genes were discovered by analysis of the gene-expression profiling in our cell-based microarray. Their clinical relevance was verified by in silico meta-analysis of the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) datasets. Our results demonstrated that BICD1 expression could predict both prognosis and response to therapy in GBM patients. First, high BICD1 expression was correlated with poor prognosis in the TCGA GBM cohort (n=523) and in the CGGA glioma cohort (n=220). Second, high BICD1 expression predicted poor outcome in patients with TMZ treatment (n=301) and radiation therapy (n=405). Third, multivariable Cox regression analysis confirmed BICD1 expression as an independent factor affecting the prognosis and therapeutic response of TMZ and radiation in GBM patients. Additionally, age, MGMT and BICD1 expression were combinedly utilized to stratify GBM patients into more distinct risk groups, which may provide better outcome assessment. Finally, we observed a strong correlation between BICD1 expression and epithelial-mesenchymal transition (EMT) in GBMs, and proposed a possible mechanism of BICD1-associated survival or therapeutic resistance in GBMs accordingly. In conclusion, our study suggests that high BICD1 expression may result in worse prognosis and could be a predictor of poor response to TMZ and radiation therapies in GBM patients.
Oncotarget | 2017
Ya Wen Hsiao; Tsung Ching Lai; Yu Hsiang Lin; Chia Yi Su; Jih-Jong Lee; Albert Taiching Liao; Yuan Feng Lin; Shu Chen Hsieh; Alexander T H Wu; Michael Hsiao
Granulysin (GNLY) is a cytolytic and proinflammatory protein expressed in activated human cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. Conventional mouse models cannot adequately address the triggering mechanism and immunopathological pathways in GNLY-associated diseases due to lack of the GNLY gene in the mouse genome. Therefore, we generated a humanized immune system (HIS) mouse model by transplanting human umbilical cord blood mononuclear cells into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice after sublethally irradiation. We examined the GNLY expression and its effects on tumor growth using this system. Our HIS mice expressed human CD45+, CD4+, CD8+ and CD56+ cells in the peripheral blood and spleen. A high expression level of human Th1/Th2 and NK cytokines was detected, indicating the activation of both T and NK cells. Importantly, we found an elevated level of GNLY in the serum and it was produced by human CTLs and NK cells obtained from the peripheral blood mononuclear cells and spleen cells in the HIS mice. The serum level of GNLY was negatively correlated with the proliferation of transplanted tumor cells in HIS mice. Collectively, our findings strongly supported that HIS mouse as a valuable model for studying human cancer under an intact immune system and the role of GNLY in tumorigenesis.