Yuan-Fong Chou Chau
Universiti Brunei Darussalam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuan-Fong Chou Chau.
Journal of Nanoparticle Research | 2016
Yuan-Fong Chou Chau; Chee Ming Lim; Chien-Ying Chiang; Nyuk Yoong Voo; Nur Syafi’ie Muhammad Idris; Siew Ung Chai
The absorbance spectra of thin-film solar cells (TFSCs) can be enhanced by constructing the tunable periodic Ag-shell nano-bead (PASNB) arrays in the active material. In this paper, we investigated a plasmonic thin-film solar cell (TFSC) which composed of the arrays of PASNB deposited onto a crystalline silicon layer. By performing three-dimensional finite element method, we demonstrate that near field coupling among the PASNB arrays results in SPR modes with enhanced absorbance and field intensity. The proposed structure can significantly enhance the plasmonic activity in a wide range of incident light and enlarge working wavelength of absorbance in the range of near-UV, visible and near-infrared. We show that the sensitivity of the PASNB arrays reveals a linear relationship with the thickness of Ag-shell nano-bead (ASNB) for both the anti-bonding and bonding modes in the absorbance spectra. The broadband of absorbance spectra could be expanded as a wide range by varying the thickness of ASNB while the particle size is kept constant. Simulation results suggest this alternative scheme to the design and improvements on plasmonic enhanced TFSCs can be extended to other nanophotonic applications.
Journal of Applied Physics | 2016
Yuan-Fong Chou Chau; Chee Ming Lim; Chuanyo Lee; Hung Ji Huang; Chun-Ting Lin; N.T.R.N. Kumara; Voo Nyuk Yoong; Hai-Pang Chiang
Tunable surface plasmon resonance (SPR) and dipole cavity plasmon modes of the scattering cross section (SCS) spectra on the single solid-gold/gold-shell nanorod have been numerically investigated by using the finite element method. Various effects, such as the influence of SCS spectra under x- and y-polarizations on the surface of the single solid-gold/gold-shell nanorod, are discussed in detail. With the single gold-shell nanorod, one can independently tune the relative SCS spectrum width by controlling the rod length and rod diameter, and the surface scattering by varying the shell thickness and polarization direction, as well as the dipole peak energy. These behaviors are consistent with the properties of localized SPRs and offer a way to optically control and produce selected emission wavelengths from the single solid-gold/gold-shell nanorod. The electric field and magnetic distributions provide us a qualitative idea of the geometrical properties of the single solid-gold/gold-shell nanorod on plasmon resonance.
Journal of Optics | 2016
N.T.R.N. Kumara; Yuan-Fong Chou Chau; Jin-Wei Huang; Hung Ji Huang; Chun-Ting Lin; Hai-Pang Chiang
Simulations of surface plasmon resonance (SPR) on the near field intensity and absorption spectra of one-dimensional (1D) and two-dimensional (2D) periodic arrays of rod-shape metal nanoparticle (MNP) pairs using the finite element method (FEM) and taking into account the different core patterns for biosensor and solar cell applications are investigated. A tunable optical spectrum corresponding to the transverse SPR modes is observed. The peak resonance wavelength (λ res) can be shifted to red as the core patterns in rod-shape MNPs have been changed. We find that the 2D periodic array of core–shell MNP pairs (case 2) exhibit a red shifted SPR that can be tuned the gap enhancement and absorption efficiency simultaneously over an extended wavelength range. The tunable optical performances give us a qualitative idea of the geometrical properties of the periodic array of rod-shape MNP pairs on SPRs that can be as a promising candidate for plasmonic biosensor and solar cell applications.
Scientific Reports | 2017
Chih-Hsien Lai; Guo-An Wang; Tsung-Kai Ling; Tzyy-Jiann Wang; Po-kai Chiu; Yuan-Fong Chou Chau; Chih-Ching Huang; Hai-Pang Chiang
It is desirable to extend the surface-enhanced Raman scattering (SERS) from the conventionally used visible range into the infrared region, because the fluorescence background is lower in the long-wavelength regime. To do this, it is important to have a SERS substrate suitable for infrared operation. In this work, we report the near infrared SERS operation based on the substrates employing star-shaped gold/silver nanoparticles and hyperbolic metamaterial (HMM) structure. We first fabricate the SERS substrate in which nanoparticles are separated from a silver film by a thin dielectric layer. Performance of the SERS substrate is investigated with a 1064-nm excitation source. Compared with similar silver film-based substrates employing respectively gold and silver spherical nanoparticles, it is found that, Raman intensity scattered by the substrate with star-shaped nanoparticles is 7.4 times stronger than that with gold nanoparticles, and 3.4 times stronger than that with silver nanoparticles. Following this, we fabricate the SERS substrate where the star-shaped nanoparticles are deposited over a HMM structure. The HMM structure comprises three pairs of germanium-silver multilayers. Further experimental result shows that, with the star-shaped nanoparticles, the HMM-based substrate yields 30% higher Raman intensity for near infrared SERS operation than the silver film-based substrate does.
Journal of Applied Physics | 2015
Yuan-Fong Chou Chau; Chee Ming Lim; Voo Nyuk Yoong; Muhammad Nur Syafi’ie Md Idris
We propose a simple structure of photonic crystal fibers (PCFs) with high birefringence and low confinement loss based on one rectangular centric ring of smaller circular air holes (CAHs) in the fiber core, and three rings of larger CAHs in the fiber cladding. This simple geometry (using all CAHs with two different air hole sizes) is capable of achieving a flexible control of the birefringence, B = 5.501 × 10−3, and ultra-low confinement loss, 7.30 × 10−5 dB/km, at an excitation wavelength of λ = 1550 nm. The birefringence value is ∼5.0 times greater than that obtained for conventional CAH PCF. This simple structure has the added advantage from the view point of easy fabrication, robustness, and cost. A full-vector finite element method combined with anisotropic perfectly matched layers was used to analyze the various fiber structures. We have analyzed four cases of CAH PCFs, focusing on the core asymmetry design as opposed to the conventional approach of CAHs or elliptical air holes on the cladding and c...
Journal of Physics D | 2016
Yuan-Fong Chou Chau; Jhih-Cyuan Jiang; Chung-Ting Chou Chao; Hai-Pang Chiang; Chee Ming Lim
A 2D periodic pair-array of cavity resonance based (CRB) plasmonic nanoantennas (PNAs) on the tailoring near field enhancement and optical spectrum of surface plasmon resonance (SPR) modes is numerically investigated by using the finite element method. The CRBPNAs consist of a single cavity or double cavities in each antenna arm. Detailed physical explanations of the simulation results and consistent dependencies of the SPR features on the structural and material parameters of CRBPNAs are presented. Compared to the solid case of counterpart, the proposed CRBPNAs display outstanding SPR characteristics and tune the peak resonance wavelength by varying the outline thickness and the cavity material. In addition, the field enhancement and optical spectrum can be precisely controlled by cavity material and outline thickness in the broad band of ultraviolet, visible and near-infrared, resulting in increased sensitivity and supporting resonances with gaps and cavity surface plasmom as well as the high value of Q factors. We interpret the optical properties of the proposed CRBPNAs and show tuning and optimizing through choice of geometric and material parameters.
ACS Omega | 2018
Yuan-Fong Chou Chau; Chung-Ting Chou Chao; Chee Ming Lim; Hung Ji Huang; Hai-Pang Chiang
In this paper, the coupled Ag-shell/dielectric-core nanorod for sensor application is investigated and the different dielectric core plasmonic metamaterial is adopted in our design. The operational principle is based on the concept of combining the lattice resonance, localized surface plasmon resonance (SPR), and cavity plasmon resonance modes within the nanostructure. The underlying mechanisms are investigated numerically by using the three-dimensional finite element method and the numerical results of coupled solid Ag nanorods are included for comparison. The characteristic absorptance/reflectance peaks/dips have been demonstrated to be induced by different plasmonic modes that could lead to different responses required for plasmonic sensors. A nearly perfect absorptance and an approximate zero reflectance with a sharp band linewidth are obtained from the proposed system, when operated as an SPR sensor with the sensitivity and figure of merit of 757.58 nm/RIU (RIU is the refractive index unit) and 50.51 (RIU–1), respectively. Our work provides a promising method for the future developments of more advanced metamaterial absorber for chemical sensing, thermal radiation tailoring, field enhanced spectroscopy, and general filtering applications.
Electrochimica Acta | 2016
Chun-Ting Lin; Mao-Nan Chang; Hung Ji Huang; Ching-Hao Chen; Ru-Jing Sun; Bo-Huei Liao; Yuan-Fong Chou Chau; Chien-Nan Hsiao; Ming-Hua Shiao; Fan-Gang Tseng
Journal of Physics D | 2017
Yuan-Fong Chou Chau; Jhih-Yu Syu; Chung-Ting Chou Chao; Hai-Pang Chiang; Chee Ming Lim
Optics Communications | 2016
Li-Zen Hsieh; Yuan-Fong Chou Chau; Chee Ming Lim; Mo-Hua Lin; Hung Ji Huang; Chun-Ting Lin; Idris Muhammad Nur Syafi’ie