Yuan Geng
Hebei Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuan Geng.
Experimental Gerontology | 2011
Qinying Ma; Jing Qiang; Ping Gu; Yanyong Wang; Yuan Geng; Mingwei Wang
Autophagy is responsible for the degradation of long-lived proteins and damaged organelles intracellular, even extracellular,and autophagy is proved to have relationship with Alzheimers disease (AD) and aging. The senescence accelerated mouse prone 8 (SAMP8) was a non-genetically modified mice widely used as a rodent model of aging and senile dementia. However, little was known about the age-related changes of autophagy in the brain of SAMP8 mice. To better understand the precise relationship between aging, autophagy and neurodegeneration, we explored the time course of cognitive ability, ubiquitin-positive inclusions, ultrastructure of neurons and detected the expression of LC3 and Beclin 1 protein in different brain regions of 2, 7 and 12-month-old SAMP8 and SAMR1 mice. We found that 7 and 12-month-old SAMP8 mice presented cognitive decline and ubiquitinated proteins enhanced. In the hippocampal neurons of 12-month-old SAMP8 mice, lots of dense clumps and autophagic vacuoles were found in the cytoplasm and axons. The LC3-II expression showed an increase in hippocampus and cortex of 7 and 12-month-old SAMP8 mice. The expression of Beclin 1 displayed a significant increase in 7 months old and a decline in 12 months old mice. Based on these data, we suggest that the autophagic activity maybe increase reactively at the beginning of AD and then showed a decline with aging, and the pathological changes of 12-month-old SAMP8 mice are more similar to the late-onset AD in the perspective of autophagy.
Journal of Alzheimer's Disease | 2014
Hualong Wang; Kaoqi Lian; Bing Han; Yanyong Wang; Sheng-Han Kuo; Yuan Geng; Jing Qiang; Meiyu Sun; Ming-Wei Wang
Alzheimers disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD.
Brain Research | 2010
Jing Liu; Mingwei Wang; Ping Gu; Qinying Ma; Yanyong Wang; Yuan Geng; Zhen-Yun Yuan; Dongsheng Cui; Zhong-Xia Zhang; Lin Ma; Bao-Hua Zhang; Mei-Gang Zhou; Ai-Ping Zhu
Senescence-accelerated mouse prone 8 (SAMP8) has an early onset of senility and a shorter life span, providing with cognitive impairment. Contrasted with C57BL/6 mouse, which is most commonly used in the study of Parkinsons disease (PD), SAMP8 needs shorter period of breeding and might be good candidate for the investigation of cognitive impairment in PD. Studies had shown the increase of sensibility to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) with aging in C57BL/6 mouse. However, the sensitivity of MPTP neurotoxicity depends on the strains of animal and the exact mechanisms of the progression of PD promoted by aging is lack of consensus. Here, we showed after MPTP injection, the spontaneous activity of both young (3-month-old) and old (6-month-old) SAMP8 decreased dramatically, and the old mice required longer recovery time. Immunohistochemical and immunoblot analysis revealed that old mice displayed significant reductions in the dopaminergic neuron numbers and tyrosine hydroxylase (TH) protein. Microglia protein (CD11b) in the striatum of old mice increased more pronouncedly than that in the young mice from 24 h to 3 days. Inducible nitric oxide synthase (iNOS) in the striatum remarkably increased, however, no discernible difference between the two groups was found. These results suggested that the sensibility to MPTP increased with aging in SAMP8. A greater increase of microglial activation in old mice may be a possible mechanism to explain how advancing age predisposes the dopamine system to parkinsonism. The MPTP-SAMP8 model will start a new consideration for the study of PD.
Journal of Alzheimer's Disease | 2016
Bing Han; Lulu Yu; Yuan Geng; Li Shen; Hualong Wang; Yanyong Wang; Jinhua Wang; Ming-Wei Wang
Differences in brain function are a central determinant of individual variability in the stress response. Brain dysfunction, resulting from aging, illness, or genetic mutations, could reduce the tolerance of glucocorticoid stress hormones. When glucocorticoids exceed tolerable limits in the brain, especially in the hippocampus, this state can cause or aggravate structural or functional damage. However, the underlying mechanisms are not well understood. This study investigated the effects of chronic unpredictable mild stress (CUMS) in APP/PS1 and control mice. We showed that 4 weeks of CUMS exposure increased the levels of glucocorticoids, reduced glucocorticoids receptor expression, and promoted senile plaque deposition, neuronal injury, and cognitive impairment in APP/PS1 mice compared to controls. The phosphorylation of insulin receptor, insulin receptor substrate 1 and associated signaling pathways (Akt, mTOR, p70S6K, ERK1/2, and PTEN) were decreased in hippocampus in APP/PS1 mice compared to control mice, while no changes were found in GSK3 and TSC2 phosphorylation. Furthermore, insulin and Akt/mTOR signaling pathways were further decreased in APP/PS1 mice after CUMS, which may be related to the activation of the stress-activated protein kinase JNK, while no alterations in the levels of phosphorylated ERK1/2, GSK3, PTEN, or TSC2 were observed. These results suggest that chronic stress may affect the insulin and Akt/mTOR pathway, accelerating the progression of Alzheimers disease in vulnerable individuals.
Oncology Research | 2009
Ming-Wei Wang; Ping Gu; Zhi-Yong Zhang; Zhen-Long Zhu; Yuan Geng; Hany Kayed; Hanswalter Zentgraf; Xiao-Feng Sun
FXYD3, interacting with Na+/K+-ATPase, is considered a cell surface regulator modulating the function of ion pumps and ion channels. The FXYD3 gene was originally cloned from murine mammary tumors and then from human breast tumors. However, no study of FXYD3 has been carried out in gliomas; therefore, we examined FXYD3 expression in gliomas and its clinicopathological significance. FXYD3 expression was immunohistochemically examined in 71 primary gliomas, along with 37 matched adjacent normal brain samples and 8 recurred gliomas. The frequency of strong FXYD3 expression was higher in the primary tumors in either unmatched (p = 0.046) or matched cases (p = 0.02), compared to normal brain tissue. FXYD3 expression was significantly more increased in females than males (p = 0.01), and in multiple site gliomas than single sites (p = 0.02). There was no difference of FXYD3 expression regarding age, tumor location, size, histological type, and tumor grade (p > 0.05). The results suggest that FXYD3 expression may be involved in glioma development, especially in multiple gliomas and female patients.
Neuroscience Letters | 2009
Zhen-Yun Yuan; Ping Gu; Li Liu; Yanyong Wang; Jing Liu; Dongsheng Cui; Yuan Geng; Zhong-Xia Zhang; Ai-Ping Zhu; Lin Ma; Ming-Wei Wang
Neuroprotective effects of enriched environment (EE) have been well established. Recent study suggests that exposure to EE can protect dopaminergic neurons against MPTP-induced Parkinsonism. After 64 female SAMP8 mice were reared in EE and standard environment (SE) for 3 months, the effects of EE and SE were compared on behavioural change, tyrosine hydroxylase (TH) immunoreaction positive neuron and dopaminetransporter (DAT) expression in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-treated SAMP8. EE mice showed decreased spontaneous activity compared with SE mice. But EE+MPTP mice showed less decreased spontaneous activity compared with SE+MPTP mice. Otherwise, EE mice showed increased percentage of entries into the open arms and percentage of time spent in the open arms. Furthermore, EE mice demonstrated reduced neurotoxicity, with less decreased TH mRNA and protein expression in Substantia Nigra (SN) after MPTP administration compared with SE mice. SE mice showed a 53.77% loss of TH-positive neurons, whereas EE mice only showed a 42.28% loss. Moreover, EE mice showed decreased DAT mRNA and protein expression compared with SE mice. These data demonstrate that EE can protect dopaminergic neurons against MPTP-induced neuronal damage, which suggest that the probability of developing Parkinsons disease (PD) may be related to life environment.
Cellular Physiology and Biochemistry | 2016
Jinhua Wang; Jie Yuan; Jingjuan Pang; Jiang Ma; Bing Han; Yuan Geng; Li Shen; Hualong Wang; Qinying Ma; Yanyong Wang; Ming-Wei Wang
Background/Aims: Chronic stress can lead to cognitive impairment. Senescence-accelerated mouse prone 8 (SAMP8) is a naturally occurring animal model that is useful for investigating the neurological mechanisms of Alzheimers disease. Here we investigated the impact and mechanisms of chronic stress on cognition in male SAMP8 mice. Methods: Male 6-month- old SAMP8 and SAMR1 (senescence-accelerated mouse resistant 1) mice strains were randomly divided into 4 groups. Mice in the unpredictable chronic mild stress (UCMS) groups were exposed to diverse stressors for 4 weeks. Then, these mice performed Morris water maze (MWM) test to assess the effect of UCMS on learning and memory. To explore the neurological mechanisms of UCMS on cognition in mice, we evaluated changes in the expression of postsynaptic density 95 (PSD95) and synaptophysin (SYN), which are essential proteins for synaptic plasticity. Five mice from each group were randomly chosen for reverse transcription polymerase chain reaction (RT-PCR) and western blotting analysis of SYN and PSD95. Results: The Morris water maze experiment revealed that the cognitive ability of the SAMP8 mice decreased with brain aging, and that chronic stress aggravated this cognitive deficit. In addition, chronic stress decreased the mRNA and protein expression of SYN and PSD95 in the hippocampus of the SAMP8 mice; however, the SAMR1 mice were unaffected. Conclusion: Our results demonstrate that decreased cognition and synaptic plasticity are related to aging. Moreover, we show that chronic stress aggravated this cognitive deficit and decreased SYN and PSD95 expression in the SAMP8 mice. Furthermore, the SAMP8 mice were more vulnerable to the detrimental effects of chronic stress on cognition than the SAMR1 mice. Our results suggest that the neurological mechanisms of chronic stress on cognition might be associated with a decrease in hippocampal SYN and PSD95 expression, which is critical for structural synaptic plasticity.
Cellular Physiology and Biochemistry | 2017
Bing Han; Jinhua Wang; Yuan Geng; Li Shen; Hualong Wang; Yanyong Wang; Ming-Wei Wang
Background/Aims: Stress response is determined by the brain, and the brain is a sensitive target for stress. Our previous experiments have confirmed that once the stress response is beyond the tolerable limit of the brain, particularly that of the hippocampus, it will have deleterious effects on hippocampal structure and function; however, the metabolic mechanisms for this are not well understood. Methods: Here, we used morris water maze, elisa and gas chromatography-time of flight/mass spectrometry to observe the changes in cognition, neuropathology and metabolomics in the hippocampus of APP/PS1 mice and wild-type (C57) mice caused by chronic unpredictable mild stress (CUMS), we also further explored the correlation between cognition and metabolomics. Results: We found that 4 weeks of CUMS aggravated cognitive impairment and increased amyloid-β deposition in APP/PS1 mice, but did not affect C57 mice. Under non-stress conditions, compared with C57 mice, there were 8 different metabolites in APP/PS1 mice. However, following CUMS, 3 different metabolites were changed compared with untreated C57 mice. Compared to APP/PS1 mice, there were 7 different metabolites in APP/PS1+CUMS mice. Among these alterations, 3-hydroxybutyric acid, valine, serine, beta-alanine and o-phosphorylethanolamine, which are involved in sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism. Conclusion: The results indicate that APP/PS1 mice are more vulnerable to stress than C57 mice, and the metabolic mechanisms of stress-related cognitive impairment in APP/PS1 mice are related to multiple pathways and networks, including sphingolipid metabolism, synthesis and degradation of ketone bodies, and amino acid metabolism.
Neurobiology of Learning and Memory | 2015
Hualong Wang; Xiao-Hui Xian; Yanyong Wang; Yuan Geng; Bing Han; Ming-Wei Wang; Wen-Bin Li
Chronic high-frequency repetitive transcranial magnetic stimulation (rTMS) is a noninvasive method to increase the excitability of neurons, and it induces long-term effects that can improve symptoms related to neurodegenerative diseases, including cognitive ability. The present study was undertaken to identify the mechanism by which rTMS improves cognitive impairments in mice. The novel object recognition test in vivo was used to evaluate the cognitive function of the mice. Whole-cell patch-clamp recordings were used to evaluate the neuronal excitability, including the resting membrane potential, the number of action potentials induced by depolarized current, after-hyperpolarization, and the voltage-dependent Ca(2+) current in hippocampal slices. We found that the aged mice showed impairments in cognitive function, and high-frequency (25Hz) rTMS for 14 consecutive-days ameliorated the impairments. Whole-cell patch-clamp recordings showed that, compared to matured mice, the hippocampal CA1 pyramidal neurons of aged mice showed significantly hyperpolarized resting membrane potential, significantly decreased numbers of action potentials after injection of depolarizing current, and significantly increased after-hyperpolarization after an action potential. The exposure to high-frequency rTMS significantly improved the above deficits in the neuronal excitability in the aged rTMS mice. Consistent with the above changes, the exposure to high-frequency rTMS also significantly decreased the voltage-dependent Ca(2+) current of the neurons compared with the aged sham mice. These data suggested that the rTMS could improve the age-related cognitive impairment in parallel with regulating the neuronal excitability and modifying the voltage-dependent Ca(2+) channels.
Neural Regeneration Research | 2012
Ping Gu; Zhong-Xia Zhang; Dong-Sheng Cui; Yanyong Wang; Lin Ma; Yuan Geng; Ming-Wei Wang
In this study, 6-hydroxydopamine was stereotaxically injected into the right substantia nigra compact and ventral tegmental area of rats to establish Parkinsons disease models. The rats then received a transplantation of bone marrow stromal cells that were previously isolated, cultured and labeled with 5-bromo-2’-deoxyuridine in vitro. Transplantation of the bone marrow stromal cells significantly decreased apomorphine-induced rotation time and the escape latency in the Morris water maze test as compared with rats with untreated Parkinsons disease. Immunohistochemical staining showed that, 5-bromo-2’-deoxyuridine-immunoreactive cells were present in the lateral ventricular wall and the choroid plexus 1 day after transplantation. These immunoreactive cells migrated to the surrounding areas of the lateral cerebral ventricle along the corpus callosum. The results indicated that bone marrow stromal cells could migrate to tissues surround the cerebral ventricle via the cerebrospinal fluid circulation and fuse with cells in the brain, thus altering the phenotype of cells or forming neuron-like cells or astrocytes capable of expressing neuron-specific proteins. Taken together, the present findings indicate that bone marrow stromal cells transplanted intracerebroventricularly could survive, migrate and significantly improve the rotational behavior and cognitive function of rats with experimentally induced Parkinsons disease.