Yuan Gong
Huazhong Agricultural University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuan Gong.
Aquatic Toxicology | 2013
Jia-Lang Zheng; Zhi Luo; Cai-Xia Liu; Qi-Liang Chen; Xiao-Ying Tan; Qing–Ling Zhu; Yuan Gong
The present study is conducted to determine the potential mechanisms of Zn on hepatic lipid deposition and metabolism for yellow catfish Pelteobagrus fulvidraco with 8-week chronic exposure to low Zn levels (Zn levels: 0.05, 0.35 and 0.86mg/l Zn, respectively) and 96-h acute exposure to a high Zn level (Zn level: 4.71mg/l Zn, respectively). For that purpose, hepatic lipid deposition and Zn accumulation, hepatic carnitine palmitoyltransferase I (CPT I) and lipoprotein lipase (LPL) activities, and the hepatic mRNA expression of ten genes involved in lipid metabolism are determined. Chronic (8 weeks) exposure to low Zn levels apparently increases hepatic lipid content, hepatosomatic index (HSI) (P<0.05) and LPL activity, and reduces hepatic CPT I activity. In contrast, the acute (96h) exposure to high Zn level reduces hepatic lipid content, HSI and LPL activity, and increases CPT I activity. The change of mRNA levels of genes related to lipid metabolism is Zn concentration-dependent. Pearson correlations among mRNA expression levels, lipid content, CPT I and LPL activities in liver are also observed in yellow catfish with the 8-week chronic Zn exposure. For the first time, our study demonstrates the effect of waterborne Zn exposure on lipid metabolism at the molecular levels in fish, which may contribute to understanding the mechanism of Zn-induced hepatic toxicity in fish.
Ecotoxicology and Environmental Safety | 2011
Jia-Lang Zheng; Zhi Luo; Qi-Liang Chen; Xu Liu; Cai-Xia Liu; Y.-H. Zhao; Yuan Gong
The present study was conducted to determine the metal accumulation, antioxidant enzymatic response, hepatic intermediary metabolism and histological changes in Synechogobius hasta exposed to 0.35 (control), 9.7 and 19.2mg/L Zn, respectively, on the 0, 4th, 8th and 12th day. Waterborne Zn exposure significantly reduced hepatosomatic index, hepatic lipid contents and fatty liver occurrence rate, increased Zn, Fe and Mn contents and reduced the contents of Cu and Ca in liver, and increased muscle Zn content. Waterborne Zn exposure also significantly influenced enzymatic activities involved in antioxidant responses (superoxide dismutase, catalase, glutathione-S-transferase, malondialdehyde) in liver and spleen, and changed hepatic intermediary enzymatic activities (succinate dehydrogenase, malic dehydrogenase, lactate dehydrogenase, lipoprotein lipase, hepatic lipase), impaired the histological structure of the gill and spleen, and reduced vacuolated hepatocytes. Thus, our study demonstrated for the first time that waterborne Zn exposure could reduce fatty liver syndrome in S. hasta.
Ecotoxicology and Environmental Safety | 2012
Qi-Liang Chen; Zhi Luo; Jia-Lang Zheng; X.-D. Li; Cai-Xia Liu; Y.-H. Zhao; Yuan Gong
The present study was conducted to determine interactive effects of waterborne co-exposure of copper (Cu) and calcium (Ca) on Cu accumulation, enzymatic activities and histology in yellow catfish Pelteobagrus fulvidraco and test the prediction that Ca could protect against Cu--induced toxicity in the fish species. Yellow catfish were exposed to 0, 1.0, 2.0 mg Cu/l, in combination with 0 and 50 mg Ca/l. Waterborne Cu and Ca co-exposure influenced the majority of tested enzymatic activities (succinate dehydrogenase, malic dehydrogenase, lactate dehydrogenase, lipoprotein lipase and hepatic lipase), and changed Cu contents in several organs (gill, liver, kidney, gastrointestine and muscle). For histological observations, at the same Ca level, waterborne Cu exposure induced injuries in gills and liver. However, Ca addition seemed to mitigate the severity of Cu--induced injuries. Thus, our study demonstrated that Ca had the capacity to reduce Cu toxicity in P. fulvidraco.
General and Comparative Endocrinology | 2013
Yuan Gong; Zhi Luo; Qing-Ling Zhu; Jia-Lang Zheng; Xiao-Ying Tan; Qi-Liang Chen; Y.C. Lin; Rong-Hua Lu
In the present study, full-length cDNA sequences of leptin (LEP), leptin receptor (LEPR) and leptin receptor overlapping transcript (LEPROT) were cloned from yellow catfish Pelteobagrus fulvidraco, and their tissue distribution profiles were determined. The validated cDNA of yellow catfish leptin (ycLEP), leptin receptor (ycLEPR) and LEPROT were 1119, 4195 and 827bp in length, encoding the peptide of 172, 1086 and 130 amino acid residues, respectively. The phylogenetic analysis revealed that fish LEP, LEPR and LEPROT were separated from tetrapod, and also ycLEPS were separated from other fish species. The ycLEP mRNA expression levels were highest in liver, followed by ovary, mesenteric fat and spleen, and lowest in intestine, heart, muscle, pituitary and testis. The ycLEPR mRNA levels were highest in pituitary, intermediate in mesenteric fat, liver, ovary, muscle and spleen, and lowest in heart, intestine and testis. The ycLEPROT mRNA levels were highest in pituitary, followed by spleen, mesenteric fat, heart, ovary, liver, muscle, testis and intestine. Identification and tissue distribution of yellow catfish LEP, LEPR and LEPROT genes provided initial step towards understanding their biological roles in yellow catfish.
Genomics | 2013
Jia-Lang Zheng; Zhi Luo; Qing-Ling Zhu; Qi-Liang Chen; Yuan Gong
Up to date, only limited information is available on genetically and functionally different isoforms of CPT I enzyme in fish. In the study, molecular characterization and their tissue expression profile of three CPT Iα isoforms (CPT Iα1a, CPT Iα1b and CPT Iα2a) and a CPT Iβ isoform from yellow catfish Pelteobagrus fulvidraco is determined. The activities and kinetic features of CPT I from several tissues have also been analyzed. The four CPT I isoforms in yellow catfish present distinct differences in amino acid sequences and structure. They are widely expressed in liver, heart, white muscle, spleen, intestine and mesenteric adipose tissue of yellow catfish at the mRNA level, but with the varying levels. CPT I activity and kinetics show tissue-specific differences stemming from co-expression of different isoforms, indicating more complex pathways of lipid utilization in fish than in mammals, allowing for precise control of lipid oxidation in individual tissue.
Aquatic Toxicology | 2013
Qi-Liang Chen; Yuan Gong; Zhi Luo; Jia-Lang Zheng; Qing-Ling Zhu
The present study was conducted to investigate the effect of waterborne cadmium (Cd) exposure on lipid metabolism in liver and muscle of juvenile yellow catfish Pelteobagrus fulvidraco. Yellow catfish were exposed to 0 (control), 0.49 and 0.95 mg Cd/l, respectively, for 6 weeks, the lipid deposition, Cd accumulation, the activities and expression level of several enzymes as well as the mRNA expression of transcription factors involved in lipid metabolism in liver and muscle were determined. Waterborne Cd exposure reduced growth performance, but increased Cd accumulation in liver and muscle. In liver, lipid content, the activities and the mRNA expression of lipogenic enzymes (6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), fatty acid synthetase (FAS)) and lipoprotein lipase (LPL) activity increased with increasing waterborne Cd concentrations. However, the mRNA expressions of LPL and peroxisome proliferators-activated receptor (PPAR) α were down-regulated by Cd exposure. Carnitine palmitoyltransferase 1 (CPT1) activity as well as the mRNA expressions of CPT1 and PPARγ showed no significant differences among the treatments. In muscle, lipid contents showed no significant differences among the treatments. The mRNA expression of 6PGD, FAS, CPT1, LPL, PPARα and PPARγ were down-regulated by Cd exposure. Thus, our study indicated that Cd triggered hepatic lipid accumulation through the improvement of lipogenesis, and that lipid homeostasis in muscle was probably conducted by the down-regulation of both lipogenesis and lipolysis. Different variation patterns of lipid metabolism to waterborne Cd exposure indicated the tissue-specific regulatory effect of lipid metabolism under waterborne Cd exposure. To our knowledge, the present study provides, for the first time, evidence that waterborne chronic Cd exposure can disturb the normal processes of lipid metabolism at both the enzymatic and molecular levels, and in two tissues (the liver and muscle).
Chemosphere | 2013
Jia-Lang Zheng; Zhi Luo; Cai-Xia Liu; Qi-Liang Chen; Qing-Ling Zhu; Wei Hu; Yuan Gong
The present study is conducted to determine the effect of acute and chronic zinc (Zn) exposure on carnitine concentration, carnitine palmitoyltransferases I (CPT I) kinetics, and expression levels of CPT I isoforms in liver, muscle and heart of yellow catfish Pelteobagrus fulvidraco. To this end, yellow catfish are subjected to chronic waterborne Zn exposure (0.05 mg Zn L(-1), 0.35 mg Zn L(-1) and 0.86 mg Zn L(-1), respectively) for 8 weeks and acute Zn exposure (0.05 mg Zn L(-1) and 4.71 mg L(-1)Zn, respectively) for 96 h, respectively. Reduced Michaelis-Menten constants (Km) and maximal reaction rates (Vmax) values in liver and muscle are observed in fish exposed to chronic Zn concentration. In contrast, Vmax and Km values in heart increase with increasing Zn concentration. Chronic Zn exposure also significantly influences the contents of free carnitine (FC), total carnitine (TC) and acylcarnitine (AC) in liver and heart, but not in muscle. The acute Zn exposure significantly increases FC, AC, TC contents in liver and muscle, but reduces their contents in heart. The chronic and acute Zn exposure influences the mRNA levels of four CPT I isoforms (CPT Iα1b, CPT Iβ, CPT Iα2a and CPT Iα1a) in liver, muscle and heart. Furthermore, correlations are observed in the mRNA levels between CPT I isoforms and Km, and between isoforms expression and activity of CPT I. Thus, chronic and acute Zn exposure shows differential effects on carnitine content, CPT I kinetics and mRNA levels of four CPT I isoforms in yellow catfish, which provides new mechanism for Zn exposure on lipid metabolism and also novel insights into Zn toxicity in fish.
Fish Physiology and Biochemistry | 2013
Wei Hu; Luo Zhi; Mei-Qin Zhuo; Qing-Ling Zhu; Jia-Lang Zheng; Qi-Liang Chen; Yuan Gong; Cai-Xia Liu
Aquaculture Nutrition | 2013
Yongchao Yuan; Y.C. Lin; H.J. Yang; Yuan Gong; Shiyuan Gong; D.H. Yu
Aquaculture Research | 2013
Y.C. Lin; Yuan Gong; Yongchao Yuan; Shiyuan Gong; D.H. Yu; Qiang Li; Zhi Luo