Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuan-Hung Lo is active.

Publication


Featured researches published by Yuan-Hung Lo.


Nature | 2015

Interleukin-22 promotes intestinal-stem-cell-mediated epithelial regeneration

Caroline A. Lindemans; Marco Calafiore; Anna Mertelsmann; Margaret H. O’Connor; Jarrod A. Dudakov; Robert R. Jenq; Enrico Velardi; Lauren F. Young; Odette M. Smith; Gillian Lawrence; Juliet Ivanov; Ya-Yuan Fu; Shuichiro Takashima; Guoqiang Hua; Maria Laura Martin; Kevin P. O’Rourke; Yuan-Hung Lo; Michal Mokry; Monica Romera-Hernandez; Lukas E. Dow; Edward E. S. Nieuwenhuis; Noah F. Shroyer; Chen Liu; Richard Kolesnick; Marcel R.M. van den Brink; Alan M. Hanash

Epithelial regeneration is critical for barrier maintenance and organ function after intestinal injury. The intestinal stem cell (ISC) niche provides Wnt, Notch and epidermal growth factor (EGF) signals supporting Lgr5+ crypt base columnar ISCs for normal epithelial maintenance. However, little is known about the regulation of the ISC compartment after tissue damage. Using ex vivo organoid cultures, here we show that innate lymphoid cells (ILCs), potent producers of interleukin-22 (IL-22) after intestinal injury, increase the growth of mouse small intestine organoids in an IL-22-dependent fashion. Recombinant IL-22 directly targeted ISCs, augmenting the growth of both mouse and human intestinal organoids, increasing proliferation and promoting ISC expansion. IL-22 induced STAT3 phosphorylation in Lgr5+ ISCs, and STAT3 was crucial for both organoid formation and IL-22-mediated regeneration. Treatment with IL-22 in vivo after mouse allogeneic bone marrow transplantation enhanced the recovery of ISCs, increased epithelial regeneration and reduced intestinal pathology and mortality from graft-versus-host disease. ATOH1-deficient organoid culture demonstrated that IL-22 induced epithelial regeneration independently of the Paneth cell niche. Our findings reveal a fundamental mechanism by which the immune system is able to support the intestinal epithelium, activating ISCs to promote regeneration.


Molecular Cancer Therapeutics | 2011

Targeting Tyrosine Phosphorylation of PCNA Inhibits Prostate Cancer Growth

Huajun Zhao; Yuan-Hung Lo; Li Ma; Susan E. Waltz; Jerilyn K. Gray; Mien Chie Hung; Shao Chun Wang

The proliferation cell nuclear antigen (PCNA) is a critical protein required for DNA replication in proliferating cells including cancer cells. However, direct inhibition of PCNA in cancer cells has been difficult due to the lack of targetable sites. We previously reported that phosphorylation of tyrosine 211 (Y211) on PCNA is important for the proliferative function of PCNA when this protein is associated with the chromatin in cancer cells. Here, we show that the Y211 phosphorylation of PCNA is a frequent event in advanced prostate cancer. To explore the potential of this signaling event in inhibition of cancer cell growth, we used a synthetic peptide, the Y211F peptide, which when present inhibits phosphorylation of Y211 on endogenous PCNA. Treatment with this peptide, but not a scrambled control peptide, resulted in S-phase arrest, inhibition of DNA synthesis, and enhanced cell death in a panel of human prostate cancer cell lines. In addition, treatment with the Y211F peptide led to decreased tumor growth in PC3-derived xenograft tumors in vivo in nude mice. Our study shows for the first time that PCNA phosphorylation at Y211 is a frequent and biologically important signaling event in prostate cancer. This study also shows a proof of concept that Y211 phosphorylation of PCNA may be used as a therapeutic target in prostate cancer cells, including cells of advanced cancers that are refractory to standard hormonal therapies. Mol Cancer Ther; 10(1); 29–36. ©2011 AACR.


PLOS ONE | 2012

Interaction of Proliferation Cell Nuclear Antigen (PCNA) with c-Abl in Cell Proliferation and Response to DNA Damages in Breast Cancer

Huajun Zhao; Po Chun Ho; Yuan-Hung Lo; Alexsandra Espejo; Mark T. Bedford; Mien Chie Hung; Shao Chun Wang

Cell proliferation in primary and metastatic tumors is a fundamental characteristic of advanced breast cancer. Further understanding of the mechanism underlying enhanced cell growth will be important in identifying novel prognostic markers and therapeutic targets. Here we demonstrated that tyrosine phosphorylation of the proliferating cell nuclear antigen (PCNA) is a critical event in growth regulation of breast cancer cells. We found that phosphorylation of PCNA at tyrosine 211 (Y211) enhanced its association with the non-receptor tyrosine kinase c-Abl. We further demonstrated that c-Abl facilitates chromatin association of PCNA and is required for nuclear foci formation of PCNA in cells stressed by DNA damage as well as in unperturbed cells. Targeting Y211 phosphorylation of PCNA with a cell-permeable peptide inhibited the phosphorylation and reduced the PCNA-Abl interaction. These results show that PCNA signal transduction has an important impact on the growth regulation of breast cancer cells.


Oncogene | 2014

The Ron receptor tyrosine kinase activates c-Abl to promote cell proliferation through tyrosine phosphorylation of PCNA in breast cancer

Huajun Zhao; Min-Shan Chen; Yuan-Hung Lo; Susan E. Waltz; Jiang Wang; Po-Chun Ho; Juozas Vasiliauskas; Rina Plattner; Yuan-Liang Wang; Shao-Chun Wang

Multiple growth pathways lead to enhanced proliferation in malignant cells. However, how the core machinery of DNA replication is regulated by growth signaling remains largely unclear. The sliding clamp proliferating cell nuclear antigen (PCNA) is an indispensable component of the DNA machinery responsible for replicating the genome and maintaining genomic integrity. We previously reported that epidermal growth factor receptor (EGFR) triggered tyrosine 211 (Y211) phosphorylation of PCNA, which in turn stabilized PCNA on chromatin to promote cell proliferation. Here we show that the phosphorylation can also be catalyzed by the non-receptor tyrosine kinase c-Abl. We further demonstrate that, in the absence of EGFR, signaling to PCNA can be attained through the activation of the Ron receptor tyrosine kinase and the downstream non-receptor tyrosine kinase c-Abl. We show that Ron and c-Abl form a complex, and that activation of Ron by its ligand, hepatocyte growth factor-like protein (HGFL), stimulates c-Abl kinase activity, which in turn directly phosphorylates PCNA at Y211 and leads to an increased level of chromatin-associated PCNA. Correspondingly, HGFL-induced Ron activation resulted in Y211 phosphorylation of PCNA while silencing of c-Abl blocked this effect. We show that c-Abl and Y211 phosphorylation of PCNA is an important axis downstream of Ron, which is required for cell proliferation. Treatment with a specific peptide that inhibits Y211 phosphorylation of PCNA or with the c-Abl pharmacological inhibitor imatinib suppressed HGFL-induced cell proliferation. Our findings identify the pathway of Ron-c-Abl-PCNA as a mechanism of oncogene-induced cell proliferation, with potentially important implications for development of combination therapy of breast cancer.


Gastroenterology | 2013

SPDEF functions as a colorectal tumor suppressor by inhibiting β-catenin activity.

Taeko K. Noah; Yuan-Hung Lo; Allison Price; Gang Chen; Eileen King; Mary Kay Washington; Bruce J. Aronow; Noah F. Shroyer

BACKGROUND & AIMS Expression of the SAM pointed domain containing ETS transcription factor (SPDEF or prostate-derived ETS factor) is regulated by Atoh1 and is required for the differentiation of goblet and Paneth cells. SPDEF has been reported to suppress the development of breast, prostate, and colon tumors. We analyzed levels of SPDEF in colorectal tumor samples from patients and its tumor-suppressive functions in mouse models of colorectal cancer (CRC). METHODS We analyzed levels of SPDEF messenger RNA and protein in more than 500 human CRC samples and more than 80 nontumor controls. Spdef(-/-)and wild-type mice (controls) were either bred with Apc(Min/+) mice, or given azoxymethane (AOM) and dextran sodium sulfate (DSS), or 1,2-dimethylhydrazine and DSS, to induce colorectal tumors. Expression of Spdef also was induced transiently by administration of tetracycline to Spdef(dox-intestine) mice with established tumors, induced by the combination of AOM and DSS or by breeding with Apc(Min/+) mice. Colon tissues were collected and analyzed for tumor number, size, grade, and for cell proliferation and apoptosis. We also analyzed the effects of SPDEF expression in HCT116 and SW480 human CRC cells. RESULTS In colorectal tumors from patients, loss of SPDEF was observed in approximately 85% of tumors and correlated with progression from normal tissue, to adenoma, to adenocarcinoma. Spdef(-/-); Apc(Min/+) mice developed approximately 3-fold more colon tumors than Spdef(+/+); Apc(Min/+) mice. Likewise, Spdef(-/-) mice developed approximately 3-fold more colon tumors than Spdef(+/+) mice after administration of AOM and DSS. After administration of 1,2-dimethylhydrazine and DSS, invasive carcinomas were observed exclusively in Spdef(-/-) mice. Conversely, expression of SPDEF was sufficient to promote cell-cycle exit in cells of established adenomas from Spdef(dox-intestine); Apc(Min/+) mice and in Spdef(dox-intestine) mice after administration of AOM + DSS. SPDEF inhibited the expression of β-catenin-target genes in mouse colon tumors, and interacted with β-catenin to block its transcriptional activity in CRC cell lines, resulting in lower levels of cyclin D1 and c-MYC. CONCLUSIONS SPDEF is a colon tumor suppressor and a candidate therapeutic target for colon adenomas and adenocarcinoma.


Stem cell reports | 2015

Activated STAT5 Confers Resistance to Intestinal Injury by Increasing Intestinal Stem Cell Proliferation and Regeneration

Shila Gilbert; Harini Nivarthi; Christopher N. Mayhew; Yuan-Hung Lo; Taeko K. Noah; Jefferson Vallance; Thomas Rülicke; Mathias Müller; Anil G. Jegga; Wenjuan Tang; Dongsheng Zhang; Michael A. Helmrath; Noah F. Shroyer; Richard Moriggl; Xiaonan Han

Summary Intestinal epithelial stem cells (IESCs) control the intestinal homeostatic response to inflammation and regeneration. The underlying mechanisms are unclear. Cytokine-STAT5 signaling regulates intestinal epithelial homeostasis and responses to injury. We link STAT5 signaling to IESC replenishment upon injury by depletion or activation of Stat5 transcription factor. We found that depletion of Stat5 led to deregulation of IESC marker expression and decreased LGR5+ IESC proliferation. STAT5-deficient mice exhibited worse intestinal histology and impaired crypt regeneration after γ-irradiation. We generated a transgenic mouse model with inducible expression of constitutively active Stat5. In contrast to Stat5 depletion, activation of STAT5 increased IESC proliferation, accelerated crypt regeneration, and conferred resistance to intestinal injury. Furthermore, ectopic activation of STAT5 in mouse or human stem cells promoted LGR5+ IESC self-renewal. Accordingly, STAT5 promotes IESC proliferation and regeneration to mitigate intestinal inflammation. STAT5 is a functional therapeutic target to improve the IESC regenerative response to gut injury.


Journal of Biological Chemistry | 2012

Epidermal growth factor receptor protects proliferating cell nuclear antigen from cullin 4A protein-mediated proteolysis.

Yuan-Hung Lo; Po-Chun Ho; Shao-Chun Wang

Background: Phosphorylation of the proliferating protein PCNA through the signaling of receptor tyrosine kinases (RTKs) protects it from ubiquitylation-mediated degraded on the chromatin. Results: The ubiquitylation enzyme CUL4A is responsible for PCNA degradation in the absence of phosphorylation. Conclusion: Phosphorylation of PCNA stabilizes PCNA by blocking interaction between PCNA and CUL4A. Significance: This may help sensitize cancer cells to therapeutic agents targeting RTKs. Proliferating cell nuclear antigen (PCNA) is an essential component for DNA synthesis upon growth stimulation. It has been shown that phosphorylation of PCNA at Tyr-211 by the EGF receptor (EGFR) protects PCNA from polyubiquitylation and degradation, whereas blocking phosphorylation induces ubiquitylation-mediated degradation of the chromatin-bound, but not the -unbound, PCNA, and suppresses cell proliferation. However, the ubiquitin E3 ligase linking growth signaling to the proteolysis of PCNA and the underlying regulatory mechanism remain to be identified. Here we show that, in the absence of Tyr-211 phosphorylation, PCNA is subject to polyubiquitylation at Lys-164 by the CUL4A E3 ligase, resulting in the degradation of PCNA. Mutation of Lys-164 to arginine prevents PCNA ubiquitylation and rescues the degradation of the K164R/Y211F PCNA double mutant. Activation of EGFR inhibits the interaction of PCNA with CUL4A, whereas inhibition of EGFR leads to increased CUL4A-PCNA interaction and CUL4A-dependent ubiquitin-mediated degradation of PCNA. Substitution of endogenous PCNA with the Y211F mutant PCNA conveys enhanced sensitization to EGFR inhibition. Our findings identify CUL4A as the ubiquitin ligase linking the down-regulation of cell surface receptor tyrosine kinase to the nuclear DNA replication machinery in cancer cells.


Molecular Carcinogenesis | 2011

Overcoming resistance to fulvestrant (ICI182,780) by downregulating the c-ABL proto-oncogene in breast cancer.

Huajun Zhao; Yuan-Hung Lo; Ling Yu; Shao-Chun Wang

Inhibiting estrogen receptor (ER) function with specific estrogen receptor modulators (SERM) can achieve a primary response in cancer patients; however, intrinsic or subsequently acquired resistance to the therapy remains a major obstacle in treatment. The pure anti‐estrogen fulvestrant has been shown to be a promising antagonist of ERα in treating advanced breast cancer. However, our knowledge of the mechanisms governing cellular responsiveness to this agent is limited. Here we show that down‐regulation of the nonreceptor tyrosine kinase c‐ABL enhanced sensitization to fulvestrant in breast cancer cells. Blocking c‐ABL kinase activity with the inhibitor imatinib further increased ERα downregulation induced by fulvestrant, decreased the number of proliferating cells entering the cell cycle, and increased cellular sensitivity to fulvestrant treatment. Conversely, introducing kinase‐activated c‐ABL can rescue fulvestrant‐induced ERα downregulation. Consistent with the effects of imatinib, the silencing of endogenous c‐ABL increased the sensitivity of breast cancer cells to fulvestrant treatment. These results demonstrate a role for c‐ABL in mediating resistance to the pure anti‐estrogen fulvestrant.


Cellular and molecular gastroenterology and hepatology | 2017

Transcriptional Regulation by ATOH1 and its Target SPDEF in the Intestine

Yuan-Hung Lo; Eunah Chung; Zhaohui Li; Ying-Wooi Wan; Maxime M. Mahe; Min-Shan Chen; Taeko K. Noah; Kristin N. Bell; Hari Krishna Yalamanchili; Tiemo J. Klisch; Zhandong Liu; Joo-Seop Park; Noah F. Shroyer

Background & Aims The transcription factor atonal homolog 1 (ATOH1) controls the fate of intestinal progenitors downstream of the Notch signaling pathway. Intestinal progenitors that escape Notch activation express high levels of ATOH1 and commit to a secretory lineage fate, implicating ATOH1 as a gatekeeper for differentiation of intestinal epithelial cells. Although some transcription factors downstream of ATOH1, such as SPDEF, have been identified to specify differentiation and maturation of specific cell types, the bona fide transcriptional targets of ATOH1 still largely are unknown. Here, we aimed to identify ATOH1 targets and to identify transcription factors that are likely to co-regulate gene expression with ATOH1. Methods We used a combination of chromatin immunoprecipitation and messenger RNA–based high-throughput sequencing (ChIP-seq and RNA-seq), together with cell sorting and transgenic mice, to identify direct targets of ATOH1, and establish the epistatic relationship between ATOH1 and SPDEF. Results By using unbiased genome-wide approaches, we identified more than 700 genes as ATOH1 transcriptional targets in adult small intestine and colon. Ontology analysis indicated that ATOH1 directly regulates genes involved in specification and function of secretory cells. De novo motif analysis of ATOH1 targets identified SPDEF as a putative transcriptional co-regulator of ATOH1. Functional epistasis experiments in transgenic mice show that SPDEF amplifies ATOH1-dependent transcription but cannot independently initiate transcription of ATOH1 target genes. Conclusions This study unveils the direct targets of ATOH1 in the adult intestines and illuminates the transcriptional events that initiate the specification and function of intestinal secretory lineages.


Biochemical and Biophysical Research Communications | 2013

Phosphorylation at tyrosine 114 of Proliferating Cell Nuclear Antigen (PCNA) is required for adipogenesis in response to high fat diet.

Yuan-Hung Lo; Po-Chun Ho; Min-Shan Chen; Eric R. Hugo; Nira Ben-Jonathan; Shao-Chun Wang

Clonal proliferation is an obligatory component of adipogenesis. Although several cell cycle regulators are known to participate in the transition between pre-adipocyte proliferation and terminal adipocyte differentiation, how the core DNA synthesis machinery is coordinately regulated in adipogenesis remains elusive. PCNA (Proliferating Cell Nuclear Antigen) is an indispensable component for DNA synthesis during proliferation. Here we show that PCNA is subject to phosphorylation at the highly conserved tyrosine residue 114 (Y114). Replacing the Y114 residue with phenylalanine (Y114F), which is structurally similar to tyrosine but cannot be phosphorylated, does not affect normal animal development. However, when challenged with high fat diet, mice carrying homozygous Y114F alleles (PCNA(F/F)) are resistant to adipose tissue enlargement in comparison to wild-type (WT) mice. Mouse embryonic fibroblasts (MEFs) harboring WT or Y114F mutant PCNA proliferate at similar rates. However, when subjected to adipogenesis induction in culture, PCNA(F/F) MEFs are not able to re-enter the cell cycle and fail to form mature adipocytes, while WT MEFs undergo mitotic clonal expansion in response to the adipogenic stimulation, accompanied by enhanced Y114 phosphorylation of PCNA, and differentiate to mature adipocytes. Consistent with the function of Y114 phosphorylation in clonal proliferation in adipogenesis, fat tissues isolated from WT mice contain significantly more adipocytes than those isolated from PCNA(F/F) mice. This study identifies a critical role for PCNA in adipose tissue development, and for the first time identifies a role of the core DNA replication machinery at the interface between proliferation and differentiation.

Collaboration


Dive into the Yuan-Hung Lo's collaboration.

Top Co-Authors

Avatar

Noah F. Shroyer

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Min-Shan Chen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Taeko K. Noah

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Shao-Chun Wang

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Winnie Y. Zou

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Huajun Zhao

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Po-Chun Ho

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joo-Seop Park

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Mary K. Estes

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge