Yuan-Jang Chen
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuan-Jang Chen.
Inorganic Chemistry | 2010
Marco M. Allard; Onduru S. Odongo; Mandy M. Lee; Yuan-Jang Chen; John F. Endicott; H. Bernhard Schlegel
The lowest energy metal to ligand charge transfer (MLCT) absorption bands found in ambient solutions of [Ru(NH(3))(4)(Y-py)(2)](2+) and [Ru(L)(2)(bpy)(2)](+) complexes (Y-py a pyridine ligand and (L)(n) a substituted acetonylacetonate, halide, am(m)ine, etc.) consist of two partly resolved absorption envelopes, MLCT(lo) and MLCT(hi). The lower energy absorption envelope, MLCT(lo), in these spectra has the larger amplitude for the bis-(Y-py) complexes, but the smaller amplitude for the bis-bpy the complexes. Time-dependent density functional theory (TD-DFT) approaches have been used to model 14 bis-bpy, three bis-(Y-py), and three mono-bpy complexes. The modeling indicates that the lowest unoccupied molecular orbital (LUMO) of each bis-(Y-py) complex corresponds to the antisymmetric combination of individual Y-py acceptor orbitals and that the transition involving the highest occupied molecular orbital (HOMO) and LUMO (HOMO-->LUMO) is the dominant contribution to MLCT(lo) in this class of complexes. The LUMO of each bis-bpy complex that contains a C(2) symmetry axis also corresponds largely to the antisymmetric combination of individual ligand acceptor orbitals, while the LUMOs are more complex when there is no C(2) axis; furthermore, the energy difference between the HOMO-->LUMO and HOMO-->LUMO+1 transitions is too small (<1000 cm(-1)) to resolve in the spectra of the bis-bpy complexes in ambient solutions. Relatively weak MLCT(lo) absorption contributions are found for all of the [Ru(L)(2)(bpy)(2)](m+) complexes examined, but they are experimentally best defined in the spectra of the (L)(2) = X-acac complexes. TD-DFT modeling of the HOMO-->LUMO transition of [Ru(L)(4)bpy](m+) complexes indicates that it is too weak to be detected and occurs at significantly lower energy (about 3000-5000 cm(-1)) than the observed MLCT absorptions. Since the chemical properties of MLCT excited states are generally correlated with the HOMO and/or LUMO properties of the complexes, such very weak HOMO-->LUMO transitions can complicate the use of spectroscopic information in their assessment. As an example, it is observed that the correlation lines between the absorption energy maxima and the differences in ground state oxidation and reduction potentials (DeltaE(1/2)) have much smaller slopes for the bis-bpy than the mono-bpy complexes. However, the observed MLCT(lo) and the calculated HOMO-->LUMO transitions of bis-bpy complexes correlate very similarly with DeltaE(1/2) and this indicates that it is the low energy and small amplitude component of the lowest energy MLCT absorption band that is most appropriately correlated with excited state chemistry, not the absorption maximum as is often assumed.
Inorganic Chemistry | 2009
Yu-Chen Lin; Wei-tin Chen; Joe Tai; Denny Su; Sheng-Yi Huang; Ingrid Lin; Ju-Ling Lin; Mandy M. Lee; Mong Feng Chiou; Yen-Hsiang Liu; Ken-Shin Kwan; Yuan-Jang Chen; Hsing-Yin Chen
The relationships between the intervalence energy (E(IT)) and the free energy difference (DeltaG) that exists between the minima of redox isomers (Fe(II)-Ru(III)/Fe(III)-Ru(II)) for various heterobimetallic complexes [(R-Fcpy)Ru(NH(3))(5)](2+/3+) (R = H, ethyl, Br, actyl; Fcpy = (4-pyridyl)ferrocenyl; Ru(NH(3))(5) = pentaam(m)ineruthenium) were examined. The changes in DeltaG for the complexes in various solvents were due to the effects of both solvent donicity and the substituents. The intervalence energy versus DeltaG, DeltaG approximately FDeltaE(1/2) (DeltaE(1/2) = E(1/2)(Fe(III/II)) - E(1/2)(Ru(III/II))), plots for the complexes in various solvents suggest a nuclear reorganization energy (lambda) of approximately 6000 cm(-1) (Chen et al. Inorg. Chem. 2000, 39, 189). For [(R-Fcpy)Ru(NH(3))(5)](2+) and [(et-Fcpy)Ru(NH(3))(4)(py)](2+) (Ru(NH(3))(4) = trans-tetraam(m)ineruthenium; py = pyridine) in various solvents, the E(1/2)(Ru(III/II)) of rutheniumam(m)ine typically was less than the E(1/2)(Fe(III/II)) of the ferrocenyl moiety. However, the low-donicity solvents resulted in relatively large values of E(1/2)(Ru(III/II)) for [(et-Fcpy)Ru(NH(3))(4)(py)](2+/3+/4+). Under our unique solvent conditions, a dramatic end-to-end interaction was observed for the trimetal cation, [(et-Fcpy)(2)Ru(NH(3))(4)](4+), in which the [(et-Fcpy)(2)Ru(NH(3))(4)](4+) included a central trans-tetraam(m)ineruthenium(III) and a terminal Fe(II)/Fe(III) pair. In general, results of electrochemical studies of [(et-Fcpy)(2)Ru(NH(3))(4)](2+) indicated both solvent-tunable E(1/2)(Ru(III/II)) (1 e(-)) and solvent-insensitive E(1/2)(Fe(III/II)) (2 e(-)) redox centers. However, in nitriles, two E(1/2)(Fe(III/II)) peaks were found with DeltaE(1/2)(Fe(III/II) - Fe(III/II)) ranging between 83 and 108 mV at a terminal metal-to-metal distance of up to 15.6 A. Furthermore, the bridging dpi orbital of the ruthenium center mediated efficient end-to-end interaction between the combinations of the terminal Fe(II)-Fe(III)/Fe(III)-Fe(II) pair. To our knowledge, this is the first example of solvent-tunable end-to-end interactions in multimetal complexes.
Inorganic Chemistry | 2011
Ju-Ling Lin; Chia-Nung Tsai; Sheng-Yi Huang; John F. Endicott; Yuan-Jang Chen; Hsing-Yin Chen
Electrochemical properties of cyanide-bridged metal squares, [Ru(4)](4+) and [Rh(2)-Ru(2)](6+), clearly demonstrate the role of the nearest (NN) metal moiety in mediating the next-nearest neighbor (NNN) metal-to-metal electronic coupling. The differences in electrochemical potentials for successive oxidations of equivalent Ru(II) centers in [Ru(4)](4+) are ΔE(1/2) = 217 mV and 256 mV and are related to intense, dual metal-to-metal-charge-transfer (MMCT) absorption bands. This contrasts with a small value of ΔE(1/2) = 77 mV and no MMCT absorption bands observed to accompany the oxidations of [Rh(2)-Ru(2)](6+). These observations demonstrate NN-mediated superexchange mixing by the linker Ru of NNN Ru(II) and Ru(III) moieties and that this mixing results in a NNN contribution to the ground state stabilization energy of about 90 ± 20 meV. In contrast, the classical Hush model for mixed valence complexes with the observed MMCT absorption parameters predicts a NNN stabilization energy of about 6 meV. The observations also indicate that the amount of charge delocalization per Ru(II)/Ru(III) pair is about 4 times greater for the NN than the NNN couples in these CN-bridged complexes, which is consistent with DFT modeling. A simple fourth-order secular determinant model is used to describe the effects of donor/acceptor mixing in these complexes.
Inorganic Chemistry | 2008
Yuan-Jang Chen; Onduru S. Odongo; Patrick G. McNamara; Konrad Szaciłowski; John F. Endicott
Irradiations of the transition metal-to-transition metal charge transfer (MMCT) absorption bands of a series of cyanide-bridged chromium(III)-ruthenium(II) complexes at 77 K leads to near-infrared emission spectra of the corresponding chromium(II)-ruthenium(III) electron transfer excited states. The lifetimes of most of the MMCT excited states increase more than 10-fold when their am(m)ine ligands are perdueterated. These unique emissions have weak, low frequency vibronic sidebands that correspond to the small excited-state distortions in metal-ligand bonds that are characteristic of transition metal electron transfer involving only the non-bonding metal centered d-orbitals suggesting that the excited-state Cr(II) center has a triplet spin configuration. However, most of the electronically excited complexes probably have overall doublet spin multiplicity and exhibit an excitation energy dependent dual emission with the near in energy Cr(III)-centered and MMCT doublet excited states forming an unusual mixed valence pair.
Journal of Physical Chemistry A | 2013
Yuan-Jang Chen; S. D. M. Chinthaka; M. T. Rodgers
Energy-resolved collision-induced dissociation (CID) of seven silver cation-ligand complexes, Ag(+)(L), with Xe is studied using guided ion beam tandem mass spectrometry techniques. The ligands, L, investigated are monomeric building blocks of polyethers and polyphenols including phenol, 2-hydroxyphenol, 3-hydroxyphenol, 4-hydroxyphenol, 2-hydroxymethyl phenol, 3-hydroxymethyl phenol, and 4-hydroxymethyl phenol. In all cases, Ag(+) is observed as the primary CID product, corresponding to endothermic loss of the intact neutral ligand. The kinetic-energy-dependent cross sections for CID of these Ag(+)(L) complexes are analyzed using an empirical threshold law to extract absolute 0 and 298 K Ag(+)-L bond dissociation energies (BDEs). Density functional theory calculations at the B3LYP/6-31G* level of theory are used to determine the structures of the neutral ligands and their complexes to Ag(+) using either the Stuttgart RSC 1997 valence basis set and effective core potential (SRSC ECP) or DZVP-DFT to describe Ag(+). Theoretical BDEs are determined at the B3LYP/6-311+G(2d,2p) level of theory again using the SRSC ECP or DZVP-DFT for Ag(+). For all systems, the most stable binding conformations found involve cation-π interactions when the SRSC ECP is used to describe Ag(+). When DZVP-DFT is employed, the most stable binding geometries remain cation-π complexes except for the complex to 2HP, where the ground-state conformer involves bidentate binding of Ag(+) to the hydroxyl oxygen atoms of both substituents. The agreement between the measured and calculated BDEs is excellent with a MAD of 2.9 ± 1.7 kJ/mol when the SRSC ECP is used to describe Ag(+) and less satisfactory for DZVP-DFT, which underestimates the strength of binding in these systems by ~14% or 26.0 ± 6.7 kJ/mol.
Coordination Chemistry Reviews | 2005
John F. Endicott; Yuan-Jang Chen; Puhui Xie
Journal of Physical Chemistry A | 2004
Yuan-Jang Chen; Puhui Xie; John F. Endicott
Inorganic Chemistry | 2008
Onduru S. Odongo; Mary Jane Heeg; Yuan-Jang Chen; Puhui Xie; John F. Endicott
Inorganic Chemistry | 2006
Yuan-Jang Chen; Puhui Xie; Mary Jane Heeg; John F. Endicott
Journal of Physical Chemistry A | 2005
Puhui Xie; Yuan-Jang Chen; Md. Jamal Uddin; John F. Endicott