Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuan-Qing Li is active.

Publication


Featured researches published by Yuan-Qing Li.


Advanced Materials | 2012

Bio‐Inspired Nacre‐like Composite Films Based on Graphene with Superior Mechanical, Electrical, and Biocompatible Properties

Yuan-Qing Li; Ting Yu; Tianyi Yang; Lianxi Zheng; Kin Liao

Bio-inspired multifunctional composite films based on reduced poly(vinyl alcohol)/graphene oxide (R-PVA/GO) layers are prepared by a facile solution casting method followed by a reduction procedure. The resulting films with nacre-like, bricks-and-mortar microstructure have excellent mechanical properties, electrical conductivity, and biocompatibility.


Journal of Materials Chemistry | 2011

Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites

Yuan-Qing Li; Tianyi Yang; Ting Yu; Lianxi Zheng; Kin Liao

A poly(vinyl alcohol) (PVA) based nanocomposite using fully exfoliated graphene oxide (GO) sheets and multi-walled carbon nanotubes (CNTs) were prepared via a simple procedure. It is confirmed from optical imaging that dispersion of CNTs in the PVA matrix can be significantly improved by adding GO sheets. Molecular dynamics (MD) simulations suggest that the GO–CNT interaction is strong and the complex is thermodynamically favorable over agglomerates of CNTs. The GO–CNT scroll-like structure formed with the hydrophilic outer surface of GO can be well dispersed in water. More important, a synergistic effect arises from the combination of CNT and GO, the GO–CNT/PVA composite films show superior mechanical properties compared to PVA composite films enhanced by GO or CNT alone, not only the tensile strength and Youngs modulus of the composites are significantly improved, but most of the ductility is also retained. The enhanced mechanical properties of the GO–CNT/PVA composite film can be attributed to the fully exploited reinforcement effect from GO and CNT via good dispersion.


Small | 2015

Graphene Foam Developed with a Novel Two-Step Technique for Low and High Strains and Pressure-Sensing Applications

Yarjan Abdul Samad; Yuan-Qing Li; A. Schiffer; Saeed M. Alhassan; Kin Liao

Freestanding, mechanically stable, and highly electrically conductive graphene foam (GF) is formed with a two-step facile, adaptable, and scalable technique. This work also demonstrates the formation of graphene foam with tunable densities and its use as strain/pressure sensor for both high and low strains and pressures.


Biosensors and Bioelectronics | 2013

Growth of coral-like PtAu–MnO2 binary nanocomposites on free-standing graphene paper for flexible nonenzymatic glucose sensors

Fei Xiao; Yuan-Qing Li; Hongcai Gao; Shuibing Ge; Hongwei Duan

The growing demand for compact point-of-care medical devices and portable instruments for on-site environmental sampling has stimulated intense research on flexible sensors that can be miniaturized and function under considerable physical deformation. We report a new type of flexible electrochemical biosensors based on free-standing graphene paper carrying binary nanocomposites of PtAu alloy and MnO(2). The coral-like PtAu-MnO(2) nanocomposites are grown on the substrate through one-step template-free electrodeposition, leading to an intimate contact between the PtAu alloy and MnO(2) matrix. The flexible electrode exhibits a unique set of structural and electrochemical properties such as better uniformity, larger active surface areas, and faster electron transfer in comparison with the control electrode prepared by tandem growth of MnO(2) network and PtAu alloy in two steps. In nonenzymatic amperometric glucose detection, the PtAu-MnO(2) binary nanostructure-decorated graphene paper has shown greatly enhanced sensing performance such as wide liner range (0.1 mM to 30.0 mM), high sensitivity (58.54 μA cm(-2) mM(-1)), low detection limit (0.02 mM, S/N=3), satisfactory selectivity, excellent reproducibility and stability, and tolerability to mechanical stress. The strategy of co-growth of metal and metal oxides on freestanding carbon substrates opens new possibility to develop high-performance flexible electrochemical sensors.


ACS Applied Materials & Interfaces | 2015

Novel graphene foam composite with adjustable sensitivity for sensor applications.

Yarjan Abdul Samad; Yuan-Qing Li; Saeed M. Alhassan; Kin Liao

In this study, free-standing graphene foam (GF) was developed by a three-step method: (1) vacuum-assisted dip-coating of nickel foam (Ni-F) with graphene oxide (GO), (2) reduction of GO to reduced graphene oxide (rGO), and then (3) etching out the nickel scaffold. Pure GF samples were tested for their morphology, chemistry, and mechanical integrity. GF mimics the microstructure of Ni-F while individual bones of GF were hollow, because of the complete removal of nickel. The GF-PDMS composites were tested for their ability to sense both compressive and bending strains in the form of change in electrical resistance. The composite showed different sensitivity to bending and compression. Upon applying a 30% compressive strain on the GF-PDMS composite, its resistance increased to ∼120% of its original value. Similarly, bending a sample to a radius of 1 mm caused the composite to change its resistance to ∼52% of its original resistance value. The relative change in resistance of the composite by an applied pressure/strain can be tuned to considerably different values by heat-treating the GF at different temperatures prior to infusing PDMS into its scaffold. Upon heat treating the GF at 800 °C prior to PDMS infusion, the GF-PDMS demonstrated ∼10 times better sensitivity than the untreated sample for a compressive strain of 20%. The composite was also tested for its ability to retain a change in electrical resistance when a brief load/strain is applied. The GF-PDMS composite was tested for at least 500 cycles under compressive cyclic loading and showed good electromechanical durability. Finally, it was demonstrated that the composite can be used to measure human blood pressure when attached to human skin.


ACS Applied Materials & Interfaces | 2017

Enhanced Microwave Absorption Performance of Coated Carbon Nanotubes by Optimizing the Fe3O4 Nanocoating Structure

Na Li; Gui-Wen Huang; Yuan-Qing Li; Hong-Mei Xiao; Qing-Ping Feng; Ning Hu; Shao-Yun Fu

It is well accepted that the microwave absorption performance (MAP) of carbon nanotubes (CNTs) can be enhanced via coating magnetic nanoparticles on their surfaces. However, it is still unclear if the magnetic coating structure has a significant influence on the microwave absorption behavior. In this work, nano-Fe3O4 compact-coated CNTs (FCCs) and Fe3O4 loose-coated CNTs (FLCs) are prepared using a simple solvothermal method. The MAP of the Fe3O4-coated CNTs is shown to be adjustable via controlling the Fe3O4 nanocoating structure. The results reveal that the overall MAP of coated CNTs strongly depends on the magnetic coating structure. In addition, the FCCs show a much better MAP than the FLCs. It is shown that the microwave absorption difference between the FLCs and FCCs is due to the disparate complementarities between the dielectric loss and the magnetic loss, which are related to the coverage density of Fe3O4 nanoparticles on the surfaces of CNTs. For FCCs, the mass ratio of CNTs to Fe3+ is then optimized to maximize the effective complementarities between the dielectric loss and the magnetic loss. Finally, a comparison is made with the literature on Fe3O4-carbon-based composites. The FCCs at the optimized CNT to Fe3+ ratio in the present work show the most effective specific RLmin (28.7 dB·mm-1) and the widest effective bandwidth (RL < -10 dB) (8.3 GHz). The excellent MAP of the as-prepared FCC sample is demonstrated to result from the consequent dielectric relaxation process and the improved magnetic loss. Consequently, the structure-property relationship revealed is significant for the design and preparation of CNT-based materials with effective microwave absorption.


Journal of Materials Chemistry | 2015

From cotton to wearable pressure sensor

Yuan-Qing Li; Yarjan Abdul Samad; Kin Liao

In this work, carbon cottons (CC) with moderate electrical conductive (11 S m−1) were prepared from cotton via a simple pyrolysis process. Flexible and electrical conductive CC/polydimethylsiloxane (PDMS) composites were fabricated by vacuum assisted infusion of PDMS resin into a CC scaffold. Based on the CC/PDMS composites prepared, a simple yet highly sensitive pressure sensor was developed, which shows a maximum sensitivity of 6.04 kPa−1, a wide working pressure up to 700 kPa, a wide response frequency from 0.01 to 5 Hz, and durability over 1000 cycles. Based on our knowledge, the pressure sensitivity of the CC/PDMS sensor is only next to the record value in a pressure sensor (8.4 kPa−1). By integrating the pressure sensor with a sport shoe and waist belt, we demonstrate that the real time sport performance and health condition could be monitored. Notably, the device fabrication process is simple and scalable with low-cost cotton as raw material. The CC/PDMS composites are believed to have promising potential applications in wearable electronic devices such as, human-machine interfacing devices, prosthetic skins, sport performance, and health monitoring.


Scientific Reports | 2015

Highly electrically conductive nanocomposites based on polymer-infused graphene sponges.

Yuan-Qing Li; Yarjan Abdul Samad; Kyriaki Polychronopoulou; Saeed M. Alhassan; Kin Liao

Conductive polymer composites require a threedimensional 3D network to impart electrical conductivity. A general method that is applicable to most polymers for achieving a desirable graphene 3D network is still a challenge. We have developed a facile technique to fabricate highly electrical conductive composite using vacuumassisted infusion of epoxy into graphene sponge GS scaffold. Macroscopic GSs were synthesized from graphene oxide solution by a hydrothermal method combined with freeze drying. The GSepoxy composites prepared display consistent isotropic electrical conductivity around 1Sm, and it is found to be close to that of the pristine GS. Compared with neat epoxy, GSepoxy has a 12ordersofmagnitude increase in electrical conductivity, attributed to the compactly interconnected graphene network constructed in the polymer matrix. This method can be extended to other materials to fabricate highly conductive composites for practical applications such as electronic devices, sensors, actuators, and electromagnetic shielding.


Journal of Materials Chemistry | 2014

From biomass to high performance solar–thermal and electric–thermal energy conversion and storage materials

Yuan-Qing Li; Yarjan Abdul Samad; Kyriaki Polychronopoulou; Saeed M. Alhassan; Kin Liao

We demonstrate that lightweight, highly electrically conductive, and three-dimensional (3D) carbon aerogels (CAs) can be produced via a hydrothermal carbonization and post pyrolysis process using various melons as raw materials. This two-step process is a totally green synthetic method with cheap and ubiquitous biomass as the only raw material. These black-colored, highly electrically conductive and 3D structured CAs are ideal materials for energy conversion and storage. Paraffin wax was impregnated into the CA scaffold by vacuum infusion. The obtained CA–wax composites show excellent form-stable phase change behavior, with a high melting enthalpy of 115.2 J g−1. The CA–wax composites exhibit very high solar radiation absorption over the whole UV-vis-NIR range, and 96% of light can be absorbed by the phase-change composite and stored as thermal energy. With an electrical conductivity of 3.4 S m−1, the CA–wax composite can be triggered by low electric potential to perform energy storage and release, with an estimated electric–heat conversion efficiency of 71.4%. Furthermore, the CA–wax composites have excellent thermal stability with stable melting–freezing enthalpy and excellent reversibility. With a combination of low-cost biomass as the raw materials, a green preparation process, low density, and excellent electrical conductivity, the 3D CAs are believed to have promising potential applications in many energy-related devices.


RSC Advances | 2013

Synergistic toughening of epoxy with carbon nanotubes and graphene oxide for improved long-term performance

Yuan-Qing Li; Rehan Umer; Abdel F. Isakovic; Yarjan Abdul Samad; Lianxi Zheng; Kin Liao

Epoxy based nanocomposites using graphene oxide (GO) sheets dispersed multi-walled carbon nanotubes (CNTs) as combination fillers were prepared using an in situ polymerization technique. A remarkable synergetic effect was observed between CNTs and GO sheets which improved the mechanical properties of the epoxy. It was confirmed by optical and field-emission scanning electron microscopy (FESEM) images that the dispersion of CNTs in epoxy matrix can be significantly improved by adding GO sheets. The overall mechanical properties of CNT–GO/epoxy composites were greatly enhanced with only adding 0.04 wt% (percent by weight) CNTs and 0.2 wt% GO sheets. Moreover, the fatigue and creep rupture lives of pure epoxy was also significantly increased by the addition of GO dispersed CNTs. Approximately a 950% improvement in fatigue life, and 400% improvement in creep rupture life were observed at the applied stress levels tested.

Collaboration


Dive into the Yuan-Qing Li's collaboration.

Top Co-Authors

Avatar

Shao-Yun Fu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong-Mei Xiao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ning Hu

Chongqing University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang-Lei Zhang

Shijiazhuang Railway Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shi-Gang Mei

Shijiazhuang Railway Institute

View shared research outputs
Top Co-Authors

Avatar

Saeed M. Alhassan

University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge