Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanfang Guan is active.

Publication


Featured researches published by Yuanfang Guan.


Biotechnology for Biofuels | 2013

Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation

Zhi Kai Yang; Ying‑Fang Niu; Yu Han Ma; Jiao Xue; Meng Han Zhang; Wei‑Dong Yang; Jie‑Sheng Liu; Song Hui Lu; Yuanfang Guan; Hong-Ye Li

BackgroundNitrogen limitation can induce neutral lipid accumulation in microalgae, as well as inhibiting their growth. Therefore, to obtain cultures with both high biomass and high lipid contents, and explore the lipid accumulation mechanisms, we implemented nitrogen deprivation in a model diatom Phaeodactylum tricornutum at late exponential phase.ResultsNeutral lipid contents per cell subsequently increased 2.4-fold, both the number and total volume of oil bodies increased markedly, and cell density rose slightly. Transcriptional profile analyzed by RNA-Seq showed that expression levels of 1213 genes (including key carbon fixation, TCA cycle, glycerolipid metabolism and nitrogen assimilation genes) increased, with a false discovery rate cut-off of 0.001, under N deprivation. However, most light harvesting complex genes were down-regulated, extensive degradation of chloroplast membranes was observed under an electron microscope, and photosynthetic efficiency declined. Further identification of lipid classes showed that levels of MGDG and DGDG, the main lipid components of chloroplast membranes, dramatically decreased and triacylglycerol (TAG) levels significantly rose, indicating that intracellular membrane remodeling substantially contributed to the neutral lipid accumulation.ConclusionsOur findings shed light on the molecular mechanisms of neutral lipid accumulation and the key genes involved in lipid metabolism in diatoms. They also provide indications of possible strategies for improving microalgal biodiesel production.


Nucleic Acids Research | 2012

IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks

Aaron K. Wong; Christopher Y. Park; Casey S. Greene; Lars Ailo Bongo; Yuanfang Guan; Olga G. Troyanskaya

Integrative multi-species prediction (IMP) is an interactive web server that enables molecular biologists to interpret experimental results and to generate hypotheses in the context of a large cross-organism compendium of functional predictions and networks. The system provides a framework for biologists to analyze their candidate gene sets in the context of functional networks, as they expand or focus these sets by mining functional relationships predicted from integrated high-throughput data. IMP integrates prior knowledge and data collections from multiple organisms in its analyses. Through flexible and interactive visualizations, researchers can compare functional contexts and interpret the behavior of their gene sets across organisms. Additionally, IMP identifies homologs with conserved functional roles for knowledge transfer, allowing for accurate function predictions even for biological processes that have very few experimental annotations in a given organism. IMP currently supports seven organisms (Homo sapiens, Mus musculus, Rattus novegicus, Drosophila melanogaster, Danio rerio, Caenorhabditis elegans and Saccharomyces cerevisiae), does not require any registration or installation and is freely available for use at http://imp.princeton.edu.


PLOS Computational Biology | 2012

Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes

Yuanfang Guan; Dmitriy Gorenshteyn; Margit Burmeister; Aaron K. Wong; John C. Schimenti; Mary Ann Handel; Matthew A. Hibbs; Olga G. Troyanskaya

Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as “functionality” and “functional relationships” are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.


Nature Methods | 2016

Inferring causal molecular networks: empirical assessment through a community-based effort

Steven M. Hill; Laura M. Heiser; Thomas Cokelaer; Michael Unger; Nicole K. Nesser; Daniel E. Carlin; Yang Zhang; Artem Sokolov; Evan O. Paull; Christopher K. Wong; Kiley Graim; Adrian Bivol; Haizhou Wang; Fan Zhu; Bahman Afsari; Ludmila Danilova; Alexander V. Favorov; Wai Shing Lee; Dane Taylor; Chenyue W. Hu; Byron L. Long; David P. Noren; Alexander J Bisberg; Gordon B. Mills; Joe W. Gray; Michael R. Kellen; Thea Norman; Stephen H. Friend; Amina A. Qutub; Elana J. Fertig

It remains unclear whether causal, rather than merely correlational, relationships in molecular networks can be inferred in complex biological settings. Here we describe the HPN-DREAM network inference challenge, which focused on learning causal influences in signaling networks. We used phosphoprotein data from cancer cell lines as well as in silico data from a nonlinear dynamical model. Using the phosphoprotein data, we scored more than 2,000 networks submitted by challenge participants. The networks spanned 32 biological contexts and were scored in terms of causal validity with respect to unseen interventional data. A number of approaches were effective, and incorporating known biology was generally advantageous. Additional sub-challenges considered time-course prediction and visualization. Our results suggest that learning causal relationships may be feasible in complex settings such as disease states. Furthermore, our scoring approach provides a practical way to empirically assess inferred molecular networks in a causal sense.


Trends in Genetics | 2014

The emerging era of genomic data integration for analyzing splice isoform function.

Hong Dong Li; Rajasree Menon; Gilbert S. Omenn; Yuanfang Guan

The vast majority of multi-exon genes in humans undergo alternative splicing, which greatly increases the functional diversity of protein species. Predicting functions at the isoform level is essential to further our understanding of developmental abnormalities and cancers, which frequently exhibit aberrant splicing and dysregulation of isoform expression. However, determination of isoform function is very difficult, and efforts to predict isoform function have been limited in the functional genomics field. Deep sequencing of RNA now provides an unprecedented amount of expression data at the transcript level. We describe here emerging computational approaches that integrate such large-scale whole-transcriptome sequencing (RNA-seq) data for predicting the functions of alternatively spliced isoforms, and we discuss their applications in developmental and cancer biology. We outline future directions for isoform function prediction, emphasizing the need for heterogeneous genomic data integration and tissue-specific, dynamic isoform-level network modeling, which will allow the field to realize its full potential.


PLOS Computational Biology | 2013

Systematically Differentiating Functions for Alternatively Spliced Isoforms through Integrating RNA-seq Data

Ridvan Eksi; Hong Dong Li; Rajasree Menon; Yuchen Wen; Gilbert S. Omenn; Matthias Kretzler; Yuanfang Guan

Integrating large-scale functional genomic data has significantly accelerated our understanding of gene functions. However, no algorithm has been developed to differentiate functions for isoforms of the same gene using high-throughput genomic data. This is because standard supervised learning requires ‘ground-truth’ functional annotations, which are lacking at the isoform level. To address this challenge, we developed a generic framework that interrogates public RNA-seq data at the transcript level to differentiate functions for alternatively spliced isoforms. For a specific function, our algorithm identifies the ‘responsible’ isoform(s) of a gene and generates classifying models at the isoform level instead of at the gene level. Through cross-validation, we demonstrated that our algorithm is effective in assigning functions to genes, especially the ones with multiple isoforms, and robust to gene expression levels and removal of homologous gene pairs. We identified genes in the mouse whose isoforms are predicted to have disparate functionalities and experimentally validated the ‘responsible’ isoforms using data from mammary tissue. With protein structure modeling and experimental evidence, we further validated the predicted isoform functional differences for the genes Cdkn2a and Anxa6. Our generic framework is the first to predict and differentiate functions for alternatively spliced isoforms, instead of genes, using genomic data. It is extendable to any base machine learner and other species with alternatively spliced isoforms, and shifts the current gene-centered function prediction to isoform-level predictions.


PLOS Computational Biology | 2010

Functional Genomics Complements Quantitative Genetics in Identifying Disease-Gene Associations

Yuanfang Guan; Cheryl L. Ackert-Bicknell; Braden Kell; Olga G. Troyanskaya; Matthew A. Hibbs

An ultimate goal of genetic research is to understand the connection between genotype and phenotype in order to improve the diagnosis and treatment of diseases. The quantitative genetics field has developed a suite of statistical methods to associate genetic loci with diseases and phenotypes, including quantitative trait loci (QTL) linkage mapping and genome-wide association studies (GWAS). However, each of these approaches have technical and biological shortcomings. For example, the amount of heritable variation explained by GWAS is often surprisingly small and the resolution of many QTL linkage mapping studies is poor. The predictive power and interpretation of QTL and GWAS results are consequently limited. In this study, we propose a complementary approach to quantitative genetics by interrogating the vast amount of high-throughput genomic data in model organisms to functionally associate genes with phenotypes and diseases. Our algorithm combines the genome-wide functional relationship network for the laboratory mouse and a state-of-the-art machine learning method. We demonstrate the superior accuracy of this algorithm through predicting genes associated with each of 1157 diverse phenotype ontology terms. Comparison between our prediction results and a meta-analysis of quantitative genetic studies reveals both overlapping candidates and distinct, accurate predictions uniquely identified by our approach. Focusing on bone mineral density (BMD), a phenotype related to osteoporotic fracture, we experimentally validated two of our novel predictions (not observed in any previous GWAS/QTL studies) and found significant bone density defects for both Timp2 and Abcg8 deficient mice. Our results suggest that the integration of functional genomics data into networks, which itself is informative of protein function and interactions, can successfully be utilized as a complementary approach to quantitative genetics to predict disease risks. All supplementary material is available at http://cbfg.jax.org/phenotype.


PLOS Computational Biology | 2013

Functional Knowledge Transfer for High-accuracy Prediction of Under-studied Biological Processes

Christopher Y. Park; Aaron K. Wong; Casey S. Greene; Jessica Rowland; Yuanfang Guan; Lars Ailo Bongo; Rebecca D. Burdine; Olga G. Troyanskaya

A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning) that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigators organism of interest. Sequence-based search methods (e.g. BLAST) have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT) dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics techniques and will help biologists systematically integrate prior knowledge from diverse systems to direct targeted experiments in their organism of study.


Alzheimers & Dementia | 2016

Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease

Genevera I. Allen; Nicola Amoroso; Catalina V Anghel; Venkat K. Balagurusamy; Christopher Bare; Derek Beaton; Roberto Bellotti; David A. Bennett; Kevin L. Boehme; Paul C. Boutros; Laura Caberlotto; Cristian Caloian; Frederick Campbell; Elias Chaibub Neto; Yu Chuan Chang; Beibei Chen; Chien Yu Chen; Ting Ying Chien; Timothy W.I. Clark; Sudeshna Das; Christos Davatzikos; Jieyao Deng; Donna N. Dillenberger; Richard Dobson; Qilin Dong; Jimit Doshi; Denise Duma; Rosangela Errico; Guray Erus; Evan Everett

Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimers disease. The Alzheimers disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state‐of‐the‐art in predicting cognitive outcomes in Alzheimers disease based on high dimensional, publicly available genetic and structural imaging data. This meta‐analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.


Journal of Proteomics | 2014

A new class of protein cancer biomarker candidates: Differentially expressed splice variants of ERBB2 (HER2/neu) and ERBB1 (EGFR) in breast cancer cell lines ☆

Gilbert S. Omenn; Yuanfang Guan; Rajasree Menon

Combined RNA-Seq and proteomics analyses reveal striking differential expression of splice isoforms of key proteins in important cancer pathways and networks. Even between primary tumor cell lines from histologically similar inflammatory breast cancers, we find striking differences in hormone receptor-negative cell lines that are ERBB2 (Her2/neu)-amplified versus ERBB1 (EGFR) over-expressed with low ERBB2 activity. We have related these findings to protein-protein interaction networks, signaling and metabolic pathways, and methods for predicting functional variants among multiple alternative isoforms. Understanding the upstream ligands and regulators and the downstream pathways and interaction networks for ERBB receptors is certain to be important for explanation and prediction of the variable levels of expression and therapeutic responses of ERBB+tumors in the breast and in other organ sites. Alternative splicing is a remarkable evolutionary development that increases protein diversity from multi-exonic genes without requiring expansion of the genome. It is no longer sufficient to report the up- or down-expression of genes and proteins without dissecting the complexity due to alternative splicing. This article is part of a Special Issue entitled: 20Years of Proteomics in memory of Viatliano Pallini. Guest Editors: Luca Bini , Juan J. Calvete, Natacha Turck, Denis Hochstrasser and Jean-Charles Sanchez.

Collaboration


Dive into the Yuanfang Guan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fan Zhu

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ridvan Eksi

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hongdong Li

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge