Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanfu Chen is active.

Publication


Featured researches published by Yuanfu Chen.


Journal of Materials Chemistry | 2015

Three-dimensional CNT/graphene–sulfur hybrid sponges with high sulfur loading as superior-capacity cathodes for lithium–sulfur batteries

Jiarui He; Yuanfu Chen; Pingjian Li; Fei Fu; Zegao Wang; Wanli Zhang

A facile method is presented to synthesize three-dimensional carbon nanotube/graphene–sulfur (3DCGS) sponge with a high sulfur loading of 80.1%. In the well-designed 3D architecture, the two-dimensional graphene nanosheets function as the 3D porous backbone and the one-dimensional (1D) highly conductive carbon nanotubes (CNTs) can not only significantly enhance the conductivity, but also effectively tune the mesoporous structure. Compared to the three-dimensional graphene–sulfur (3DGS) sponge without CNTs, the conductivity of 3DCGS is enhanced by 324.7%; most importantly, compared to the monomodal mesopores (with a size of 3.5 nm) formed in the 3DG, bimodal mesopores (with sizes of 3.5 and 32.1 nm) were formed in 3DCG; the bimodal mesopores, especially the newly formed 32.1 nm mesopores, provide abundant electrochemical nanoreactors, accommodate plenty of sulfur and polysulfides, and facilitate charge transportation and electrolyte penetration. The significantly enhanced conductivity and the unique bimodal-mesopore structure in 3DCGS result in its superior electrochemical performance. The reversible discharge capacity for sulfur is 1217 mA h g−1; the corresponding capacity for the whole electrode (including the 3DCGS, the conductive additive and the binder) is 877.4 mA h ge−1, which is the highest ever reported. In addition, the capacity decay is as low as 0.08% per cycle, and the high-rate capacity up to 4C is as large as 653.4 mA h g−1. The 3DCGS sponge with high sulfur loading is promising as a superior-capacity cathode for lithium–sulfur batteries.


ACS Nano | 2011

Flexible Graphene-Based Electroluminescent Devices

Zegao Wang; Yuanfu Chen; Pingjian Li; Xin Hao; Jingbo Liu; Ran Huang; Yanrong Li

For the first time, large-area CVD-grown graphene films transferred onto flexible PET substrates were used as transparent conductive electrodes in alternating current electroluminescence (ACEL) devices. The flexible ACEL device based on a single-layer graphene electrode has a turn-on voltage of 80 V; at 480 V (16 kHz), the luminance and luminous efficiency are 1140 cd/m(2) and 5.0 lm/W, respectively. The turn-on voltage increases and the luminance decreases with increasing stacked layers of graphene, which means the single-layer graphene is the best optimal choice as the transparent conductive electrode. Furthermore, it demonstrates that the graphene-based ACEL device is highly flexible and can work very well even under a very large strain of 5.4%, suggesting great potential applications in flexible optoelectronics.


ACS Nano | 2016

From Metal–Organic Framework to Li2S@C–Co–N Nanoporous Architecture: A High-Capacity Cathode for Lithium–Sulfur Batteries

Jiarui He; Yuanfu Chen; Weiqiang Lv; Kechun Wen; Chen Xu; Wanli Zhang; Yanrong Li; Wu Qin; Weidong He

Owing to the high theoretical specific capacity (1166 mAh g-1), lithium sulfide (Li2S) has been considered as a promising cathode material for Li-S batteries. However, the polysulfide dissolution and low electronic conductivity of Li2S limit its further application in next-generation Li-S batteries. In this report, a nanoporous Li2S@C-Co-N cathode is synthesized by liquid infiltration-evaporation of ultrafine Li2S nanoparticles into graphitic carbon co-doped with cobalt and nitrogen (C-Co-N) derived from metal-organic frameworks. The obtained Li2S@C-Co-N architecture remarkably immobilizes Li2S within the cathode structure through physical and chemical molecular interactions. Owing to the synergistic interactions between C-Co-N and Li2S nanoparticles, the Li2S@C-Co-N composite delivers a reversible capacity of 1155.3 (99.1% of theoretical value) at the initial cycle and 929.6 mAh g-1 after 300 cycles, with nearly 100% Coulombic efficiency and a capacity fading of 0.06% per cycle. It exhibits excellent rate capacities of 950.6, 898.8, and 604.1 mAh g-1 at 1C, 2C, and 4C, respectively. Such a cathode structure is promising for practical applications in high-performance Li-S batteries.


Advanced Materials | 2017

Yolk–Shelled C@Fe3O4 Nanoboxes as Efficient Sulfur Hosts for High‐Performance Lithium–Sulfur Batteries

Jiarui He; Liu Luo; Yuanfu Chen; Arumugam Manthiram

Owing to the high theoretical specific capacity (1675 mA h g-1 ) and low cost, lithium-sulfur (Li-S) batteries offer advantages for next-generation energy storage. However, the polysulfide dissolution and low electronic conductivity of sulfur cathodes limit the practical application of Li-S batteries. To address such issues, well-designed yolk-shelled carbon@Fe3 O4 (YSC@Fe3 O4 ) nanoboxes as highly efficient sulfur hosts for Li-S batteries are reported here. With both physical entrapment by carbon shells and strong chemical interaction with Fe3 O4 cores, this unique architecture immobilizes the active material and inhibits diffusion of the polysulfide intermediates. Moreover, due to their high conductivity, the carbon shells and the polar Fe3 O4 cores facilitate fast electron/ion transport and promote continuous reactivation of the active material during the charge/discharge process, resulting in improved electrochemical utilization and reversibility. With these merits, the S/YSC@Fe3 O4 cathodes support high sulfur content (80 wt%) and loading (5.5 mg cm-2 ) and deliver high specific capacity, excellent rate capacity, and long cycling stability. This work provides a new perspective to design a carbon/metal-oxide-based yolk-shelled framework as a high sulfur-loading host for advanced Li-S batteries with superior electrochemical properties.


ACS Nano | 2016

Three-Dimensional Hierarchical Reduced Graphene Oxide/Tellurium Nanowires: A High-Performance Freestanding Cathode for Li–Te Batteries

Jiarui He; Yuanfu Chen; Weiqiang Lv; Kechun Wen; Zegao Wang; Wanli Zhang; Yanrong Li; Wu Qin; Weidong He

Three-dimensional aerogel with ultrathin tellurium nanowires (TeNWs) wrapped homogeneously by reduced graphene oxide (rGO) is realized via a facile hydrothermal method. Featured with high conductivity and large flexibility, the rGO constructs a conductive three-dimensional (3D) backbone with rich porosity and leads to a free-standing, binder-free cathode for lithium-tellurium (Li-Te) batteries with excellent electrochemical performances. The cathode shows a high initial capacity of 2611 mAh cm(-3) at 0.2 C, a high retention of 88% after 200 cycles, and a high-rate capacity of 1083 mAh cm(-3) at 10 C. In particular, the 3D aerogel cathode delivers a capacity of 1685 mAh cm(-3) at 1 C after 500 cycles, showing pronounced long-cycle performance at high current density. The performances are attributed to the well-defined flexible 3D architecture with high porosity and conductivity network, which offers highly efficient channels for electron transfer and ionic diffusion while compromising volume expansion of Te in charge/discharge. Owing to such advantageous properties, the reported 3D rGO/tellurium nanowire (3DGT) aerogel presents promising application potentials as a high-performance cathode for Li-Te batteries.


Nanoscale | 2014

Pure thiophene-sulfur doped reduced graphene oxide: synthesis, structure, and electrical properties

Zegao Wang; Pingjian Li; Yuanfu Chen; Jiarui He; Wanli Zhang; Oliver G. Schmidt; Yanrong Li

Here we propose, for the first time, a new and green ethanol-thermal reaction method to synthesize high-quality and pure thiophene-sulfur doped reduced graphene oxide (rGO), which establishes an excellent platform for studying sulfur (S) doping effects on the physical/chemical properties of this material. We have quantitatively demonstrated that the conductivity enhancement of thiophene-S doped rGO is not only caused by the more effective reduction induced by S doping, but also by the doped S atoms, themselves. Furthermore, we demonstrate that the S doping is more effective in enhancing conductivity of rGO than nitrogen (N) doping due to its stronger electron donor ability. Finally, the dye-sensitized solar cell (DSCC) employing the S-doped rGO/TiO2 photoanode exhibits much better performance than undoped rGO/TiO2, N-doped rGO/TiO2 and TiO2 photoanodes. It therefore seems promising for thiophene-S doped rGO to be widely used in electronic and optoelectronic devices.


Journal of Materials Chemistry C | 2014

Synthesis of nitrogen-doped graphene by chemical vapour deposition using melamine as the sole solid source of carbon and nitrogen

Zegao Wang; Pingjian Li; Yuanfu Chen; Jingbo Liu; Hongjun Tian; Jinhao Zhou; Wanli Zhang; Yanrong Li

Nitrogen doping is a promising method to modulate the electrical properties of graphene. However, the reported nitrogen-doped graphene (NG) films usually show low electron concentration and low carrier mobility. In this study, we have demonstrated the chemical vapour deposition of NG films, where melamine was used as the sole source of both carbon and nitrogen. The studies show that the nitrogen content and configurations are strongly dependent on the growth temperature. At a growth temperature of 990 °C, the total N content and graphitic-N/total N simultaneously reached the maximum values of ∼5.6 at% and ∼40%, respectively. Further, the electrical studies reveal that the NG film displays typical n-type behaviour in air. The Dirac point and mobility were determined to be ∼−25 V and ∼74 cm2 V−1 s−1, respectively, which indicate that the as-synthesized NG film has high electron concentration and high carrier mobility. This can be attributed to the significant increase in the ratio of graphitic-N to total N, because graphitic-N has a higher electron donor ability and shows lower carrier scattering than do pyridinic-N and pyrrolic-N. This study is beneficial for not only the carrier transport mechanism, but also potential applications of NG film.


RSC Advances | 2014

Synthesis and electrochemical properties of graphene-modified LiCo1/3Ni1/3Mn1/3O2 cathodes for lithium ion batteries

Jiarui He; Yuanfu Chen; Pingjian Li; Zegao Wang; Fei Qi; Jingbo Liu

High-quality, reduced graphene oxide (RGO) homogeneously coated LiCo1/3Ni1/3Mn1/3O2 (NCM) was synthesized by ultrasonically mixing/stirring GO and NCM in water and then thermal reduction of GO to RGO. The composite NCM cathode shows much higher specific capacity, better cycling stability and high rate performance after being wrapped by RGO, which is attributed to the much lower electrochemical impedance for the electrode due to the presence of RGO. It is promising for RGO modified NCM to be used as an excellent cathode.


ACS Applied Materials & Interfaces | 2017

Self-Assembled Coral-like Hierarchical Architecture Constructed by NiSe2 Nanocrystals with Comparable Hydrogen-Evolution Performance of Precious Platinum Catalyst

Bo Yu; Xinqiang Wang; Fei Qi; Binjie Zheng; Jiarui He; Jie Lin; Wanli Zhang; Yanrong Li; Yuanfu Chen

For the first time, self-assembled coral-like hierarchical architecture constructed by NiSe2 nanocrystals has been synthesized via a facile one-pot DMF-solvothermal method. Compared with hydrothermally synthesized NiSe2 (H-NiSe2), the DMF-solvothermally synthesized nanocrystalline NiSe2 (DNC-NiSe2) exhibits superior performance of hydrogen evolution reaction (HER): it has a very low onset overpotential of ∼136 mV (vs RHE), a very high cathode current density of 40 mA/cm2 at ∼200 mV (vs RHE), and an excellent long-term stability; most importantly, it delivers an ultrasmall Tafel slope of 29.4 mV dec-1, which is the lowest ever reported for NiSe2-based catalysts, and even lower than that of precious platinum (Pt) catalyst (30.8 mV dec-1). The superior HER performance of DNC-NiSe2 is attributed to the unique self-assembled coral-like network, which is a benefit to form abundant active sites and facilitates the charge transportation due to the inherent high conductivity of NiSe2 nanocrystals. The DNC-NiSe2 is promising to be a viable alternative to precious metal catalysts for hydrogen evolution.


Advanced Materials | 2015

Graphene Terahertz Modulators by Ionic Liquid Gating

Yang Wu; Chan La-o-vorakiat; Xuepeng Qiu; Jingbo Liu; Praveen Deorani; Karan Banerjee; Jaesung Son; Yuanfu Chen; Elbert E. M. Chia; Hyunsoo Yang

Graphene based THz modulators are promising due to the conical band structure and high carrier mobility of graphene. Here, we tune the Fermi level of graphene via electrical gating with the help of ionic liquid to control the THz transmittance. It is found that, in the THz range, both the absorbance and reflectance of the device increase proportionately to the available density of states due to intraband transitions. Compact, stable, and repeatable THz transmittance modulation up to 93% (or 99%) for a single (or stacked) device has been demonstrated in a broad frequency range from 0.1 to 2.5 THz, with an applied voltage of only 3 V at room temperature.

Collaboration


Dive into the Yuanfu Chen's collaboration.

Top Co-Authors

Avatar

Wanli Zhang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jiarui He

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Binjie Zheng

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Pingjian Li

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Fei Qi

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Yanrong Li

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Xinqiang Wang

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jinhao Zhou

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Jingbo Liu

University of Electronic Science and Technology of China

View shared research outputs
Top Co-Authors

Avatar

Bo Yu

University of Electronic Science and Technology of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge