Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanhang Cheng is active.

Publication


Featured researches published by Yuanhang Cheng.


ACS Applied Materials & Interfaces | 2015

Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles

Yuanhang Cheng; Qingdan Yang; Jingyang Xiao; Qifan Xue; Ho-Wa Li; Zhiqiang Guan; Hin-Lap Yip; Sai-Wing Tsang

Solution processed zinc oxide (ZnO) nanoparticles (NPs) with excellent electron transport properties and a low-temperature process is a viable candidate to replace titanium dioxide (TiO2) as electron transport layer to develop high-efficiency perovskite solar cells on flexible substrates. However, the number of reported high-performance perovskite solar cells using ZnO-NPs is still limited. Here we report a detailed investigation on the chemistry and crystal growth of CH3NH3PbI3 perovskite on ZnO-NP thin films. We find that the perovskite films would severely decompose into PbI2 upon thermal annealing on the bare ZnO-NP surface. X-ray photoelectron spectroscopy (XPS) results show that the hydroxide groups on the ZnO-NP surface accelerate the decomposition of the perovskite films. To reduce the decomposition, we introduce a buffer layer in between the ZnO-NPs and perovskite layers. We find that a commonly used buffer layer with small molecule [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) can slow down but cannot completely avoid the decomposition. On the other hand, a polymeric buffer layer using poly(ethylenimine) (PEI) can effectively separate the ZnO-NPs and perovskite, which allows larger crystal formation with thermal annealing. The power conversion efficiencies of perovskite photovoltaic cells are significantly increased from 6.4% to 10.2% by replacing PC61BM with PEI as the buffer layer.


ACS Applied Materials & Interfaces | 2015

Chlorine Incorporation for Enhanced Performance of Planar Perovskite Solar Cell Based on Lead Acetate Precursor

Jian Qing; Hrisheekesh-Thachoth Chandran; Yuanhang Cheng; Xiao-Ke Liu; Ho-Wa Li; Sai-Wing Tsang; Ming-Fai Lo; Chun-Sing Lee

We show the effects of chlorine incorporation in the crystallization process of perovskite film based on a lead acetate precursor. We demonstrate a fabrication process for fast grain growth with highly preferred {110} orientation upon only 5 min of annealing at 100 °C. By studying the correlation between precursor composition and morphology, the growth dynamic of perovskite film in the current system is discussed. In particular, we found that both lead acetate precursor and Cl incorporation are beneficial to perovskite growth. While lead acetate allows fast crystallization process, Cl improves perovskite crystallinity. Planar perovskite solar cells with optimized parameters deliver a best power conversion efficiency of 15.0% and average efficiency of 14.0% with remarkable reproducibility and good stability.


Journal of Materials Chemistry | 2016

Spectroscopic study on the impact of methylammonium iodide loading time on the electronic properties in perovskite thin films

Yuanhang Cheng; Ho-Wa Li; Jinfeng Zhang; Qingdan Yang; Taili Liu; Zhiqiang Guan; Jian Qing; Chun-Sing Lee; Sai-Wing Tsang

Solution processed metal–organic halide perovskite photovoltaic devices have recently drawn tremendous attention due to their simplicity of fabrication and high efficiency. Despite numerous reports on optimizing perovskite films with different fabrication approaches, there is limited understanding on the correlation between sensitive processing conditions and the microstructural and electronic properties of perovskite films. Here we combine several opto-electrical spectroscopy techniques to investigate the methylammonium iodide (MAI) loading time effect on the doping density profile and uncoordinated ions in resulting CH3NH3PbI3 perovskite thin films. We find that even in a very short period of different loading times within two minutes, there is a significant impact on the device power conversion efficiency (PCE) from 2% to over 15%. It is found that the doping density profile is inhomogeneous across the perovskite film with too short MAI loading time, resulting in an S-shape in the current density–voltage (J–V) characteristics. On the other hand, devices with too long loading time have excess uncoordinated ions attributed to the J–V hysteresis. By using combined spectroscopy techniques to pinpoint the electronic properties in perovskite films, this work would shed light on the understanding of the controversial origins of the reported S-shape and hysteresis in perovskite photovoltaic cells.


Journal of Materials Chemistry | 2017

Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability

Qingdan Yang; Jia Li; Yuanhang Cheng; Ho-Wa Li; Zhiqiang Guan; Binbin Yu; Sai-Wing Tsang

In recently developed high-efficiency metal organometal halide perovskite solar cells (PVSCs), electron and hole transporting materials have shown key roles in determining the growth of perovskite crystals, as well as the performance and stability of the device. However, interlayer materials which can facilitate both high efficiency and stability at low cost are still limited. Here, we demonstrate that, by controlling the thickness of solution-processed graphene oxide (GO), one can achieve a balance of high work function and conductivity. Using GO with the optimized thickness as a hole-transporting material (HTM) in PVSCs, a high power conversion efficiency (PCE) of 16.5% with no hysteresis has been achieved with excellent light-soaking photocurrent stability in comparison with a commonly used organic-based HTM. Under high humidity and continuous light soaking, the encapsulated perovskite devices retained >80% of their initial efficiency for >2000 h. Detailed studies on the GO binding energy, charge transfer efficiency with perovskite, and crystal morphology shed light on the origin of the observed improvement in photovoltaic performance. Benefiting from the merits of low temperature, solution processability and low cost, the proposed GO fabrication methods could aid scalable production of PVSCs with high PCE and excellent stability.


Journal of Materials Chemistry | 2016

The detrimental effect of excess mobile ions in planar CH3NH3PbI3 perovskite solar cells

Yuanhang Cheng; Ho-Wa Li; Jian Qing; Qingdan Yang; Zhiqiang Guan; Chen Liu; Sin Hang Cheung; S. K. So; Chun-Sing Lee; Sai-Wing Tsang

The origin of the impact of mobile ions in perovskite solar cells (PVSCs) has recently become a hot topic of debate. Here, we investigate systematically the structural effect and various recombination pathways in PVSCs with different ion concentrations. By probing the transient ionic current in PVSCs, we extract mobile ion concentrations in a range of 1016 cm−3 to 1017 cm−3 depending on the processing conditions during a two-step process. The PVSC with the lowest ion concentration has both the highest efficiency over 15% and shelf-life over 1300 hours. Interestingly, in contrast to the commonly adopted models in the literature, we find that the crystal size and the bimolecular and trap-assisted recombination are not responsible for the large difference in photovoltaic performance. Instead, by using transient photocurrent and steady-state photoluminescence approaches, we find that the large reduction of short-circuit current (Jsc) in mobile ion populated devices is ascribed to the slow decay in photocurrent and the increasing amount of non-radiative recombination. In addition, we also find that the excess mobile ions trigger the deformation of perovskite to PbI2, which severely reduces the device lifetime. The results provide valuable information on the understanding of the role of excess mobile ions in the degradation mechanism of PVSCs.


ACS Applied Materials & Interfaces | 2016

Probing the Energy Level Alignment and the Correlation with Open-Circuit Voltage in Solution-Processed Polymeric Bulk Heterojunction Photovoltaic Devices.

Qingdan Yang; Ho-Wa Li; Yuanhang Cheng; Zhiqiang Guan; Taili Liu; Tsz-Wai Ng; Chun-Sing Lee; Sai-Wing Tsang

Energy level alignment at the organic donor and acceptor interface is a key to determine the photovoltaic performance in organic solar cells, but direct probing of such energy alignment is still challenging especially for solution-processed bulk heterojunction (BHJ) thin films. Here we report a systematic investigation on probing the energy level alignment with different approaches in five commonly used polymer:[6,6]-phenyl-C71-butyric acid methyl ester (PCBM) BHJ systems. We find that by tuning the weight ratio of polymer to PCBM the electronic features from both polymer and PCBM can be obtained by photoemission spectroscopy. Using this approach, we find that some of the BHJ blends simply follow vacuum level alignment, but others show strong energy level shifting as a result of Fermi level pinning. Independently, by measuring the temperature-dependent open-circuit voltage (VOC), we find that the effective energy gap (Eeff), the energy difference between the highest occupied molecular orbital of the polymer donor (EHOMO-D) and lowest unoccupied molecular orbital of the PCBM acceptor (ELUMO-A), obtained by photoemission spectroscopy in all polymer:PCBM blends has an excellent agreement with the extrapolated VOC at 0 K. Consequently, the photovoltage loss of various organic BHJ photovoltaic devices at room temperature is in a range of 0.3-0.6 V. It is believed that the demonstrated direct measurement approach of the energy level alignment in solution-processed organic BHJ will bring deeper insight into the origin of the VOC and the corresponding photovoltage loss mechanism in organic photovoltaic cells.


Journal of Materials Chemistry | 2017

Boosting the photovoltaic thermal stability of fullerene bulk heterojunction solar cells through charge transfer interactions

Carr Hoi Yi Ho; Huanyang Cao; Yong Lu; Tsz-Ki Lau; Sin Hang Cheung; Ho-Wa Li; Hang Yin; Ka Lok Chiu; Lik-Kuen Ma; Yuanhang Cheng; Sai-Wing Tsang; Xinhui Lu; S. K. So; Beng S. Ong

Fullerene-based bulk heterojunction organic solar cells (BHJ-OSCs) represent one of the current state-of-the-art organic solar cells. Nonetheless, most of these devices still suffer from adverse performance degradation due to thermally induced morphology changes of active layers. We herein demonstrate that the photovoltaic performance stability of BHJ-OSCs can be profoundly enhanced with an appositely functionalized 9-fluorenylidene malononitrile. The latter, through charge transfer (CT) interactions with a donor polymer, enables the formation of a “frozen” 3-dimensional mesh-like donor polymer matrix, which effectively restrains free movement of embedded fullerene molecules and suppresses their otherwise uncontrolled aggregation. 9-Fluorenylidene malononitrile derivatives with multiple CT interaction sites are particularly effective as preservation of a power conversion efficiency of over 90% under severe thermal stress has been accomplished. The generality of this novel strategy has been affirmed with several common donor polymers, manifesting it to be hitherto the most efficient approach to stabilized fullerene-based BHJ-OSCs.


ACS Applied Materials & Interfaces | 2018

Evidence on Enhanced Exciton Polarizability in Donor/Acceptor Bulk Heterojunction Organic Photovoltaics

Zhiqiang Guan; Ho-Wa Li; Yuanhang Cheng; Yingqi Zhao; Ming-Fai Lo; Sai-Wing Tsang; Chun-Sing Lee

Using electroabsorption spectroscopy, we explore the polarizability of Frenkel excitons in both pristine donor and D/A blend films. We observe for the first time that the polarizability of excitonic states in pristine donors can be dramatically increased by adding an n-type acceptor. By investigating the dielectric effect in different organic semiconductor systems, we find that the polarizability of Frenkel excitons has direct correlation with the measured dielectric constant of the bulk heterojunction thin films. Our results disclose the difference in the nature of Frenkel excitons in pristine donor and D/A blend systems, revealing an important role of excitonic states in charge separation process of organic photovoltaic devices.


ACS Applied Materials & Interfaces | 2018

Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic–Inorganic Hybrid Perovskite Photovoltaic Absorber

Hyeonggeun Yu; Yuanhang Cheng; Menglin Li; Sai-Wing Tsang; Franky So

Direct integration of an infrared (IR) photodetector with an organic light-emitting diode (OLED) enables low-cost, pixel-free IR imaging. However, the operation voltage of the resulting IR-to-visible up-conversion is large because of the series device architecture. Here, we report a low-voltage near-IR (NIR)-to-visible up-conversion device using formamidinium lead iodide as a NIR absorber integrated with a phosphorescent OLED. Because of the efficient photocarrier injection from the hybrid perovskite layer to the OLED, we observed a sub-band gap turn-on of the OLED under NIR illumination. The device showed a NIR-to-visible up-conversion efficiency of 3% and a luminance on/off ratio of 103 at only 5 V. Finally, we demonstrate pixel-free NIR imaging using the up-conversion device.


Solar RRL | 2017

18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH

Yuanhang Cheng; Xiuwen Xu; Yuemin Xie; Ho-Wa Li; Jian Qing; Chunqing Ma; Chun-Sing Lee; Franky So; Sai-Wing Tsang

Collaboration


Dive into the Yuanhang Cheng's collaboration.

Top Co-Authors

Avatar

Sai-Wing Tsang

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Chun-Sing Lee

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Ho-Wa Li

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Qingdan Yang

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Guan

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Xiuwen Xu

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yuemin Xie

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Franky So

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Jian Qing

City University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

S. K. So

Hong Kong Baptist University

View shared research outputs
Researchain Logo
Decentralizing Knowledge