Yuanjie Su
University of Electronic Science and Technology of China
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuanjie Su.
ACS Nano | 2013
Ya Yang; Hulin Zhang; Zong-Hong Lin; Yu Sheng Zhou; Qingshen Jing; Yuanjie Su; Jin Yang; Jun Chen; Chenguo Hu; Zhong Lin Wang
We report human skin based triboelectric nanogenerators (TENG) that can either harvest biomechanical energy or be utilized as a self-powered tactile sensor system for touch pad technology. We constructed a TENG utilizing the contact/separation between an area of human skin and a polydimethylsiloxane (PDMS) film with a surface of micropyramid structures, which was attached to an ITO electrode that was grounded across a loading resistor. The fabricated TENG delivers an open-circuit voltage up to -1000 V, a short-circuit current density of 8 mA/m(2), and a power density of 500 mW/m(2) on a load of 100 MΩ, which can be used to directly drive tens of green light-emitting diodes. The working mechanism of the TENG is based on the charge transfer between the ITO electrode and ground via modulating the separation distance between the tribo-charged skin patch and PDMS film. Furthermore, the TENG has been used in designing an independently addressed matrix for tracking the location and pressure of human touch. The fabricated matrix has demonstrated its self-powered and high-resolution tactile sensing capabilities by recording the output voltage signals as a mapping figure, where the detection sensitivity of the pressure is about 0.29 ± 0.02 V/kPa and each pixel can have a size of 3 mm × 3 mm. The TENGs may have potential applications in human-machine interfacing, micro/nano-electromechanical systems, and touch pad technology.
ACS Nano | 2013
Weiqing Yang; Jun Chen; Jin Yang; Peng Bai; Yuanjie Su; Qingsheng Jing; Xia Cao; Zhong Lin Wang
The triboelectric nanogenerator (TENG), a unique technology for harvesting ambient mechanical energy based on the triboelectric effect, has been proven to be a cost-effective, simple, and robust approach for self-powered systems. However, a general challenge is that the output current is usually low. Here, we demonstrated a rationally designed TENG with integrated rhombic gridding, which greatly improved the total current output owing to the structurally multiplied unit cells connected in parallel. With the hybridization of both the contact-separation mode and sliding electrification mode among nanowire arrays and nanopores fabricated onto the surfaces of two contact plates, the newly designed TENG produces an open-circuit voltage up to 428 V, and a short-circuit current of 1.395 mA with the peak power density of 30.7 W/m(2). Relying on the TENG, a self-powered backpack was developed with a vibration-to-electric energy conversion efficiency up to 10.62(±1.19) %. And it was also demonstrated as a direct power source for instantaneously lighting 40 commercial light-emitting diodes by harvesting the vibration energy from natural human walking. The newly designed TENG can be a mobile power source for field engineers, explorers, and disaster-relief workers.
ACS Nano | 2013
Ya Yang; Hulin Zhang; Jun Chen; Xiandai Zhong; Zong-Hong Lin; Yuanjie Su; Peng Bai; Xiaonan Wen; Zhong Lin Wang
We report a triboelectric nanogenerator (TENG) that plays dual roles as a sustainable power source by harvesting wind energy and as a self-powered wind vector sensor system for wind speed and direction detection. By utilizing the wind-induced resonance vibration of a fluorinated ethylene-propylene film between two aluminum foils, the integrated TENGs with dimensions of 2.5 cm × 2.5 cm × 22 cm deliver an output voltage up to 100 V, an output current of 1.6 μA, and a corresponding output power of 0.16 mW under an external load of 100 MΩ, which can be used to directly light up tens of commercial light-emitting diodes. Furthermore, a self-powered wind vector sensor system has been developed based on the rationally designed TENGs, which is capable of detecting the wind direction and speed with a sensitivity of 0.09 μA/(m/s). This work greatly expands the applicability of TENGs as power sources for self-sustained electronics and also self-powered sensor systems for ambient wind detection.
ACS Nano | 2014
Yuanjie Su; Peng Bai; Jun Chen; Qingshen Jing; Weiqing Yang; Zhong Lin Wang
Energy harvesting from ambient water motions is a desirable but underexplored solution to on-site energy demand for self-powered electronics. Here we report a liquid-solid electrification-enabled generator based on a fluorinated ethylene propylene thin film, below which an array of electrodes are fabricated. The surface of the thin film is charged first due to the water-solid contact electrification. Aligned nanowires created on the thin film make it hydrophobic and also increase the surface area. Then the asymmetric screening to the surface charges by the waving water during emerging and submerging processes causes the free electrons on the electrodes to flow through an external load, resulting in power generation. The generator produces sufficient output power for driving an array of small electronics during direct interaction with water bodies, including surface waves and falling drops. Polymer-nanowire-based surface modification increases the contact area at the liquid-solid interface, leading to enhanced surface charging density and thus electric output at an efficiency of 7.7%. Our planar-structured generator features an all-in-one design without separate and movable components for capturing and transmitting mechanical energy. It has extremely lightweight and small volume, making it a portable, flexible, and convenient power solution that can be applied on the ocean/river surface, at coastal/offshore areas, and even in rainy places. Considering the demonstrated scalability, it can also be possibly used in large-scale energy generation if layers of planar sheets are connected into a network.
ACS Nano | 2014
Jin Yang; Jun Chen; Ying Liu; Weiqing Yang; Yuanjie Su; Zhong Lin Wang
As a vastly available energy source in our daily life, acoustic vibrations are usually taken as noise pollution with little use as a power source. In this work, we have developed a triboelectrification-based thin-film nanogenerator for harvesting acoustic energy from ambient environment. Structured using a polytetrafluoroethylene thin film and a holey aluminum film electrode under carefully designed straining conditions, the nanogenerator is capable of converting acoustic energy into electric energy via triboelectric transduction. With an acoustic sensitivity of 9.54 V Pa(-1) in a pressure range from 70 to 110 dB and a directivity angle of 52°, the nanogenerator produced a maximum electric power density of 60.2 mW m(-2), which directly lit 17 commercial light-emitting diodes (LEDs). Furthermore, the nanogenerator can also act as a self-powered active sensor for automatically detecting the location of an acoustic source with an error less than 7 cm. In addition, an array of devices with varying resonance frequencies was employed to widen the overall bandwidth from 10 to 1700 Hz, so that the nanogenerator was used as a superior self-powered microphone for sound recording. Our approach presents an adaptable, mobile, and cost-effective technology for harvesting acoustic energy from ambient environment, with applications in infrastructure monitoring, sensor networks, military surveillance, and environmental noise reduction.
Advanced Materials | 2015
Jin Yang; Jun Chen; Yuanjie Su; Qingshen Jing; Zhaoling Li; Fang Yi; Xiaonan Wen; Zhaona Wang; Zhong Lin Wang
The first bionic membrane sensor based on triboelectrification is reported for self-powered physiological and behavioral measurements such as local internal body pressures for non-invasive human health assessment. The sensor can also be for self-powered anti-interference throat voice recording and recognition, as well as high-accuracy multimodal biometric authentication, thus potentially expanding the scope of applications in self-powered wearable medical/health monitoring, interactive input/control devices as well as accurate, reliable, and less intrusive biometric authentication systems.
Nano Research | 2013
Weiqing Yang; Jun Chen; Xiaonan Wen; Peng Bai; Yuanjie Su; Yuan Lin; Zhong Lin Wang
AbstractTriboelectric nanogenerators (TENG), a unique technology for harvesting ambient mechanical energy based on triboelectric effect, have been proven to be a cost-effective, simple and robust approach for self-powered systems. Here, we demonstrate a rationally designed triple-cantilever based TENG for harvesting vibration energy. With the assistance of nanowire arrays fabricated onto the surfaces of beryllium-copper alloy foils, the newly designed TENG produces an open-circuit voltage up to 101 V and a short-circuit current of 55.7 μA with a peak power density of 252.3 mW/m2. The TENG was systematically investigated and demonstrated as a direct power source for instantaneously lighting up 40 commercial light-emitting diodes. For the first time, a TENG device has been designed for harvesting vibration energy, especially at low frequencies, opening its application as a new energy technology.
ACS Nano | 2015
Jun Chen; Jin Yang; Qingshen Jing; Peng Bai; Weiqing Yang; Xuewei Qi; Yuanjie Su; Zhong Lin Wang
The computer keyboard is one of the most common, reliable, accessible, and effective tools used for human--machine interfacing and information exchange. Although keyboards have been used for hundreds of years for advancing human civilization, studying human behavior by keystroke dynamics using smart keyboards remains a great challenge. Here we report a self-powered, non-mechanical-punching keyboard enabled by contact electrification between human fingers and keys, which converts mechanical stimuli applied to the keyboard into local electronic signals without applying an external power. The intelligent keyboard (IKB) can not only sensitively trigger a wireless alarm system once gentle finger tapping occurs but also trace and record typed content by detecting both the dynamic time intervals between and during the inputting of letters and the force used for each typing action. Such features hold promise for its use as a smart security system that can realize detection, alert, recording, and identification. Moreover, the IKB is able to identify personal characteristics from different individuals, assisted by the behavioral biometric of keystroke dynamics. Furthermore, the IKB can effectively harness typing motions for electricity to charge commercial electronics at arbitrary typing speeds greater than 100 characters per min. Given the above features, the IKB can be potentially applied not only to self-powered electronics but also to artificial intelligence, cyber security, and computer or network access control.
ACS Nano | 2014
Yuanjie Su; Weiqing Yang; Jin Yang; Jun Chen; Qingshen Jing; Zhiming Wu; Yadong Jiang; Zhong Lin Wang
We report a self-powered, single-electrode-based triboelectric sensor (SE-TES) array for detecting object motion inside of a plastic tube. This innovative, cost-effective, simple-designed SE-TES consists of thin-film-based ring-shaped Cu electrodes and a polytetrafluoroethylene (PTFE) tube. On the basis of the coupling effect between triboelectrification and electrostatic induction, the sensor generates electric output signals in response to mechanical motion of an object (such as a ball) passing through the electrodes. An array of Cu electrodes linearly aligned along the tube enables the detection of location and speed of the moving steel ball inside. The signal-to-noise ratio of this fabricated device reached 5.3 × 10(3). Furthermore, we demonstrated real-time monitoring and mapping of the motion characteristics of the steel ball inside the tube by using a seven-unit array of electrode channels arranged along the tube. Triggered by the output current signal, LED bulbs were utilized as real-time indicators of the position of a rolling ball. In addition, the SE-TES also shows the capability of detecting blockage in a water pipe. This work demonstrates potentially widespread applications of the triboelectric sensor in a self-powered tracking system, blockage detection, flow control, and logistics monitoring.
ACS Applied Materials & Interfaces | 2014
Weiqing Yang; Jun Chen; Xiaonan Wen; Qingshen Jing; Jin Yang; Yuanjie Su; Wenzuo Wu; Zhong Lin Wang
We present triboelectrification based, flexible, reusable, and skin-friendly dry biopotential electrode arrays as motion sensors for tracking muscle motion and human-machine interfacing (HMI). The independently addressable, self-powered sensor arrays have been utilized to record the electric output signals as a mapping figure to accurately identify the degrees of freedom as well as directions and magnitude of muscle motions. A fast Fourier transform (FFT) technique was employed to analyse the frequency spectra of the obtained electric signals and thus to determine the motion angular velocities. Moreover, the motion sensor arrays produced a short-circuit current density up to 10.71 mA/m(2), and an open-circuit voltage as high as 42.6 V with a remarkable signal-to-noise ratio up to 1000, which enables the devices as sensors to accurately record and transform the motions of the human joints, such as elbow, knee, heel, and even fingers, and thus renders it a superior and unique invention in the field of HMI.
Collaboration
Dive into the Yuanjie Su's collaboration.
University of Electronic Science and Technology of China
View shared research outputs