Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuankui Sun is active.

Publication


Featured researches published by Yuankui Sun.


Water Research | 2015

The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: the development in zero-valent iron technology in the last two decades (1994-2014).

Xiaohong Guan; Yuankui Sun; Hejie Qin; Jinxiang Li; Irene M.C. Lo; Di He; Haoran Dong

Over the past 20 years, zero-valent iron (ZVI) has been extensively applied for the remediation/treatment of groundwater and wastewater contaminated with various organic and inorganic pollutants. Based on the intrinsic properties of ZVI and the reactions that occur in the process of contaminants sequestration by ZVI, this review summarizes the limitations of ZVI technology and the countermeasures developed in the past two decades (1994-2014). The major limitations of ZVI include low reactivity due to its intrinsic passive layer, narrow working pH, reactivity loss with time due to the precipitation of metal hydroxides and metal carbonates, low selectivity for the target contaminant especially under oxic conditions, limited efficacy for treatment of some refractory contaminants and passivity of ZVI arising from certain contaminants. The countermeasures can be divided into seven categories: pretreatment of pristine ZVI to remove passive layer, fabrication of nano-sized ZVI to increase the surface area, synthesis of ZVI-based bimetals taking advantage of the catalytic ability of the noble metal, employing physical methods to enhance the performance of ZVI, coupling ZVI with other adsorptive materials and chemically enhanced ZVI technology, as well as methods to recover the reactivity of aged ZVI. The key to improving the rate of contaminants removal by ZVI and broadening the applicable pH range is to enhance ZVI corrosion and to enhance the mass transfer of the reactants including oxygen and H(+) to the ZVI surface. The characteristics of the ideal technology are proposed and the future research needs for ZVI technology are suggested accordingly.


Journal of Hazardous Materials | 2012

Application of titanium dioxide in arsenic removal from water: A review

Xiaohong Guan; Juanshan Du; Xiaoguang Meng; Yuankui Sun; Bo Sun; Qinghai Hu

Natural arsenic pollution is a global phenomenon and various technologies have been developed to remove arsenic from drinking water. The application of TiO(2) and TiO(2)-based materials in removing inorganic and organic arsenic was summarized. TiO(2)-based arsenic removal methods developed to date have been focused on the photocatalytic oxidation (PCO) of arsenite/organic arsenic to arsenate and adsorption of inorganic and organic arsenic. Many efforts have been taken to improve the performance of TiO(2) by either combing TiO(2) with adsorbents with good adsorption property in one system or developing bifunctional adsorbents with both great photocatalytic ability and high adsorption capacity. Attempts have also been made to immobilize fine TiO(2) particles on supporting materials like chitosan beads or granulate it to facilitate its separation from water. Among the anions commonly exist in groundwater, humic acid and bicarbonate have significant influence on TiO(2) photocatalyzed oxidation of As(III)/organic arsenic while phosphate, silicate, fluoride, and humic acid affect arsenic adsorption by TiO(2)-based materials. There has been a controversy over the TiO(2) PCO mechanisms of arsenite for the past 10 years but the adsorption mechanisms of inorganic and organic arsenic onto TiO(2)-based materials are relatively well established. Future needs in TiO(2)-based arsenic removal technology are proposed.


Environmental Science & Technology | 2014

Effect of weak magnetic field on arsenate and arsenite removal from water by zerovalent iron: an XAFS investigation.

Yuankui Sun; Xiaohong Guan; Jianmin Wang; Xiaoguang Meng; Chunhua Xu; Gongming Zhou

In this study, a weak magnetic field (WMF), superimposed with a permanent magnet, was utilized to improve ZVI corrosion and thereby enhance As(V)/As(III) removal by ZVI at pHini 3.0-9.0. The experiment with real arsenic-bearing groundwater revealed that WMF could greatly improve arsenic removal by ZVI even in the presence of various cations and anions. The WMF-induced improvement in As(V)/As(III) removal by ZVI should be primarily associated with accelerated ZVI corrosion, as evidenced by the pH variation, Fe(2+) release, and the formation of corrosion products as characterized with X-ray absorption fine structure spectroscopy. The arsenic species analysis in solution/solid phases at pHini 3.0 revealed that As(III) oxidation to As(V) in aqueous phase preceded its subsequent sequestration by the newly formed iron (hydr)oxides. However, both As(V) adsorption following As(III) oxidation to As(V) in solution and As(III) adsorption preceding its conversion to As(V) in solid phase were observed at pHini 5.0-9.0. The application of WMF accelerated the transformation of As(III) to As(V) in both aqueous and solid phases at pHini 5.0-9.0 and enhanced the oxidation of As(III) to As(V) in solution at pHini 3.0.


Water Research | 2013

Enhanced arsenite removal from water by Ti(SO4)(2) coagulation

Yuankui Sun; Gongming Zhou; Xinmei Xiong; Xiaohong Guan; Lina Li; Hongliang Bao

Coagulation with the conventional coagulants such as ferric and aluminum salts is not efficient for As(III) removal. In this study Ti(SO4)2 was employed for enhanced As(III) removal and Fe2(SO4)3 was used as a reference. The removal efficiencies of As(III) by Ti(SO4)2 at pH 4.0-9.0 were greater than that by Fe2(SO4)3 by 7.39-32.8% and 3.14-48.1% for coagulants dosed at 8.0 mg/L and 12.0 mg/L, respectively. The advantage of Ti(SO4)2 over Fe2(SO4)3 for As(III) removal was more significant at lower pH, which may be ascribed to the more negatively charged surface of Ti(IV) hydroxides. To reduce As(III) from 0.2 mg/L to 10 μg/L, the necessary dosage of Ti(SO4)2 was only ≈ 50% of that of Fe2(SO4)3. The adsorption capacity of As(III) on Ti(IV) hydroxides formed in-situ was greater than that on Fe(III) hydroxides formed in-situ by ≈ 100 mg/g and several times higher than the adsorption capacities of TiO2 for As(III) reported in the literature. The presence of competing anions, silicate, phosphate and humic acid, did not alter the advantage of Ti(SO4)2 over Fe2(SO4)3 for arsenite removal. Replacing partial Ti(SO4)2 with Fe2(SO4)3 (same dosage) and applying them sequentially could achieve similar As(III) removal efficiency as single Ti(SO4)2, which could thus reduce the chemical cost. The extended X-ray absorption fine structure (EXAFS) spectroscopy indicated that As(III) form bidentate binuclear surface complexes with Ti(IV) hydroxides as evidenced by As(III)-Ti bond distances of 3.33-3.35 Å. This study revealed that Ti(SO4)2 may be an alternative coagulant for efficient As(III) removal.


Journal of Environmental Sciences-china | 2015

Weak magnetic field accelerates chromate removal by zero-valent iron

Pian Feng; Xiaohong Guan; Yuankui Sun; Wonyong Choi; Hejie Qin; Jianmin Wang; Junlian Qiao; Lina Li

Weak magnetic field (WMF) was employed to improve the removal of Cr(VI) by zero-valent iron (ZVI) for the first time. The removal rate of Cr(VI) was elevated by a factor of 1.12-5.89 due to the application of a WMF, and the WMF-induced improvement was more remarkable at higher Cr(VI) concentration and higher pH. Fe2+ was not detected until Cr(VI) was exhausted, and there was a positive correlation between the WMF-induced promotion factor of Cr(VI) removal rate and that of Fe2+ release rate in the absence of Cr(VI) at pH4.0-5.5. These phenomena imply that ZVI corrosion with Fe2+ release was the limiting step in the process of Cr(VI) removal. The superimposed WMF had negligible influence on the apparent activation energy of Cr(VI) removal by ZVI, indicating that WMF accelerated Cr(VI) removal by ZVI but did not change the mechanism. The passive layer formed with WMF was much more porous than without WMF, thereby facilitating mass transport. Therefore, WMF could accelerate ZVI corrosion and alleviate the detrimental effects of the passive layer, resulting in more rapid removal of Cr(VI) by ZVI. Exploiting the magnetic memory of ZVI, a two-stage process consisting of a small reactor with WMF for ZVI magnetization and a large reactor for removing contaminants by magnetized ZVI can be employed as a new method of ZVI-mediated remediation.


RSC Advances | 2015

Enhancement of the advanced Fenton process by weak magnetic field for the degradation of 4-nitrophenol

Xinmei Xiong; Yuankui Sun; Bo Sun; Weihua Song; Jingyi Sun; Naiyun Gao; Junlian Qiao; Xiaohong Guan

A weak magnetic field (WMF) was employed to enhance the degradation of 4-nitrophenol (4-NP) by the advanced Fenton process (Fe0/H2O2) in this study. Although the oxidation rates of 4-NP by Fe0/H2O2 and WMF–Fe0/H2O2 dropped sharply upon increasing the initial pH (pHini), the introduction of WMF could remarkably improve the 4-NP degradation by Fe0/H2O2 at pHini ranging from 3.0 to 6.0. The quenching and electron paramagnetic resonance experiments verified that the hydroxyl radical was the primary oxidant responsible for the 4-NP degradation at pHini 4.0 and the cumulative concentration of HO˙ in the WMF–Fe0/H2O2 system was about 3-fold that in Fe0/H2O2 system. The superimposed WMF increased the generation of HO˙ in the Fe0/H2O2 process by accelerating the Fe0 corrosion and FeII generation, which was the limiting step of the Fe0/H2O2 process. The application of WMF largely enhanced the mineralization of 4-NP but it did not change the 4-NP degradation pathways, which were proposed based on the degradation products detected with LC-MS/MS. The optimum intensity of the magnetic field for 4-NP oxidation by WMF–Fe0/H2O2 was determined to be 20 mT. Response surface methodology (RSM) was applied to analyze the experimental variables and it was found that lower pH and higher Fe0 and H2O2 dosages were beneficial for 4-NP degradation by WMF–Fe0/H2O2. Among the three factors (pHini, Fe0 dosage, and H2O2 dosage) investigated, pHini was the most important factor affecting the performance of the WMF–Fe0/H2O2 process. The WMF–Fe0/H2O2 technology provides a new alternative for scientists working in the field of water treatment.


Environmental Science & Technology | 2016

Aging of Zerovalent Iron in Synthetic Groundwater: X-ray Photoelectron Spectroscopy Depth Profiling Characterization and Depassivation with Uniform Magnetic Field

Hanyang Xu; Yuankui Sun; Jinxiang Li; Fengmin Li; Xiaohong Guan

Scanning electron microscopy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) depth profiling were employed to characterize the aged zerovalent iron (AZVI) samples incubated in synthetic groundwater. The AZVI samples prepared under different conditions exhibited the passive layers of different morphologies, amounts, and constituents. Owing to the accumulation of iron oxides on their surface, all the prepared AZVI samples were much less reactive than the pristine ZVI for Se(IV) removal. However, the reactivity of all AZVI samples toward Se(IV) sequestration could be significantly enhanced by applying a uniform magnetic field (UMF). Moreover, the flux intensity of UMF necessary to depassivate an AZVI sample was strongly dependent on the properties of its passive layer. The UMF of 1 mT was strong enough to restore the reactivity of the AZVI samples with Fe3O4 as the major constituent of the passive film or with a thin layer of α-Fe2O3 and γ-FeOOH in the external passive film. The flux intensity of UMF necessary to depassivate the AZVI samples would increase to 2 mT or even 5 mT if the AZVI samples were covered with passive films being thicker, denser, and contained more γ-FeOOH and α-Fe2O3. Furthermore, increasing the flux intensity of UMF facilitated the reduction of Se(IV) to Se(0) by AZVI samples.


Frontiers of Environmental Science & Engineering in China | 2014

Simultaneous removal of arsenate and fluoride from water by Al-Fe (hydr)oxides

Junlian Qiao; Zimin Cui; Yuankui Sun; Qinghai Hu; Xiaohong Guan

Al-Fe (hydr)oxides with different Al/Fe molar ratios (4:1, 1:1, 1:4, 0:1) were prepared using a coprecipitat method and were then employed for simultaneous removal of arsenate and fluoride. The 4Al: Fe was superior to other adsorbents for removal of arsenate and fluoride in the pH range of 5.0–9.0. The adsorption capacity of the Al-Fe (hydr)oxides for arsenate and fluoride at pH 6.5±0.3 increased with increasing Al content in the adsorbents. The linear relationship between the amount of OH− released from the adsorbent and the amount of arsenate or fluoride adsorbent by 4Al: Fe indicated that the adsorption of arsenate and fluoride by Al-Fe (hydr)oxides was realized primarily through quantitative ligand exchange. Moreover, there was a very good correlation between the surface hydroxyl group densities of Al-Fe (hydr)oxides and their adsorption capacities for arsenate or fluoride. The highest adsorption capacity for arsenate and fluoride by 4Al : Fe is mainly ascribed to its highest surface hydroxyl group density besides its largest pHpzc. The dosage of adsorbent necessary to remove arsenate and fluoride to meet the drinking water standard was mainly determined by the presence of fluoride since fluoride was generally present in groundwater at much higher concentration than arsenate.


Environmental Science & Technology | 2017

Combined Effect of Weak Magnetic Fields and Anions on Arsenite Sequestration by Zerovalent Iron: Kinetics and Mechanisms

Yuankui Sun; Yihong Hu; Tinglin Huang; Jinxiang Li; Hejie Qin; Xiaohong Guan

In this study, the effects of major anions (e.g., ClO4-, NO3-, Cl-, and SO42-) in water on the reactivity of zerovalent iron (ZVI) toward As(III) sequestration were evaluated with and without a weak magnetic field (WMF). Without WMF, ClO4- and NO3- had negligible influence on As(III) removal by ZVI, but Cl- and SO42- could improve As(III) sequestration by ZVI. Moreover, the WMF-enhancing effect on As(III) removal by ZVI was minor in ultrapure water. A synergetic effect of WMF and individual anion on improving As(III) removal by ZVI was observed for each of the investigated anion, which became more pronounced as the concentration of anion increased. Based on the extent of enhancing effects, these anions were ranked in the order of SO42- > Cl- > NO3- ≈ ClO4- (from most- to least-enhanced). Furthermore, the inhibitory effect of HSiO3-, HCO3-, and H2PO4- on ZVI corrosion could be alleviated taking advantage of the combined effect of WMF and SO42-. The coupled influence of anions and WMF was associated with the simultaneous movement of anions with paramagnetic Fe2+ to keep local electroneutrality in solution. Our findings suggest that the presence of anions is quite essential to maintaining or stimulating the WMF effect.


Environmental Science & Technology | 2017

Advances in Sulfidation of Zerovalent Iron for Water Decontamination

Jinxiang Li; Xueying Zhang; Yuankui Sun; Liping Liang; Bingcai Pan; Weiming Zhang; Xiaohong Guan

Sulfidation has gained increasing interest in recent years for improving the sequestration of contaminants by zerovalent iron (ZVI). In view of the bright prospects of the sulfidated ZVI (S-ZVI), this review comprehensively summarized the latest developments in sulfidation of ZVI, particularly that of nanoscale ZVI (S-nZVI). The milestones in development of S-ZVI technology including its background, enlightenment, synthesis, characterization, water remediation and treatment, etc., are summarized. Under most circumstances, sulfidation can enhance the sequestration of various organic compounds and metal(loid)s by ZVI to various extents. In particular, the reactivity of S-ZVI toward contaminants is strongly dependent on S/Fe molar ratio, sulfidation method, and solution chemistry. Additionally, sulfidation can improve the selectivity of ZVI toward targeted contaminant over water under anaerobic conditions. The mechanisms of sulfidation-induced improvement in contaminants sequestration by ZVI are also summarized. Finally, this review identifies the current knowledge gaps and future research needs of S-ZVI for environmental application.

Collaboration


Dive into the Yuankui Sun's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoguang Meng

Stevens Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge