Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanming Zhu is active.

Publication


Featured researches published by Yuanming Zhu.


Journal of Agricultural and Food Chemistry | 2011

Discovery and Characterization of Sulfoxaflor, a Novel Insecticide Targeting Sap-Feeding Pests

Yuanming Zhu; Michael R. Loso; Gerald B. Watson; Thomas C. Sparks; Richard B. Rogers; Jim X. Huang; B. Clifford Gerwick; Jonathan M. Babcock; Donald Kelley; Vidyadhar B. Hegde; Benjamin M. Nugent; James M. Renga; Ian Denholm; Kevin Gorman; Gerrit J. deBoer; James M. Hasler; Thomas Meade; James D. Thomas

The discovery of sulfoxaflor [N-[methyloxido[1-[6-(trifluoromethyl)-3-pyridinyl]ethyl]-λ(4)-sulfanylidene] cyanamide] resulted from an investigation of the sulfoximine functional group as a novel bioactive scaffold for insecticidal activity and a subsequent extensive structure-activity relationship study. Sulfoxaflor, the first product from this new class (the sulfoximines) of insect control agents, exhibits broad-spectrum efficacy against many sap-feeding insect pests, including aphids, whiteflies, hoppers, and Lygus, with levels of activity that are comparable to those of other classes of insecticides targeting sap-feeding insects, including the neonicotinoids. However, no cross-resistance has been observed between sulfoxaflor and neonicotinoids such as imidacloprid, apparently the result of differences in susceptibility to oxidative metabolism. Available data are consistent with sulfoxaflor acting via the insect nicotinic receptor in a complex manner. These observations reflect the unique structure of the sulfoximines compared with neonicotinoids.


Pest Management Science | 2011

Biological characterization of sulfoxaflor, a novel insecticide

Jonathan M. Babcock; Clifford Gerwick; Jim X. Huang; Michael R. Loso; Genta Nakamura; Steven P Nolting; Richard B. Rogers; Thomas C. Sparks; James D. Thomas; Gerald B. Watson; Yuanming Zhu

BACKGROUND The commercialization of new insecticides is important for ensuring that multiple effective product choices are available. In particular, new insecticides that exhibit high potency and lack insecticidal cross-resistance are particularly useful in insecticide resistance management (IRM) programs. Sulfoxaflor possesses these characteristics and is the first compound under development from the novel sulfoxamine class of insecticides. RESULTS In the laboratory, sulfoxaflor demonstrated high levels of insecticidal potency against a broad range of sap-feeding insect species. The potency of sulfoxaflor was comparable with that of commercial products, including neonicotinoids, for the control of a wide range of aphids, whiteflies (Homoptera) and true bugs (Heteroptera). Sulfoxaflor performed equally well in the laboratory against both insecticide-susceptible and insecticide-resistant populations of sweetpotato whitefly, Bemisia tabaci Gennadius, and brown planthopper, Nilaparvata lugens (Stål), including populations resistant to the neonicotinoid insecticide imidacloprid. These laboratory efficacy trends were confirmed in field trials from multiple geographies and crops, and in populations of insects with histories of repeated exposure to insecticides. In particular, a sulfoxaflor use rate of 25 g ha(-1) against cotton aphid (Aphis gossypii Glover) outperformed acetamiprid (25 g ha(-1) ) and dicrotophos (560 g ha(-1) ). Sulfoxaflor (50 g ha(-1) ) provided a control of sweetpotato whitefly equivalent to that of acetamiprid (75 g ha(-1) ) and imidacloprid (50 g ha(-1) ) and better than that of thiamethoxam (50 g ha(-1) ). CONCLUSION The novel chemistry of sulfoxaflor, its unique biological spectrum of activity and its lack of cross-resistance highlight the potential of sulfoxaflor as an important new tool for the control of sap-feeding insect pests.


Insect Biochemistry and Molecular Biology | 2011

Novel nicotinic action of the sulfoximine insecticide sulfoxaflor

Gerald B. Watson; Michael R. Loso; Jonathan M. Babcock; James M. Hasler; Theodore J. Letherer; Cathy D. Young; Yuanming Zhu; John E. Casida; Thomas C. Sparks

The novel sulfoximine insecticide sulfoxaflor is as potent or more effective than the neonicotinoids for toxicity to green peach aphids (GPA, Myzus persicae). The action of sulfoxaflor was characterized at insect nicotinic acetylcholine receptors (nAChRs) using electrophysiological and radioligand binding techniques. When tested for agonist properties on Drosophila melanogaster Dα2 nAChR subunit co-expressed in Xenopus laevis oocytes with the chicken β2 subunit, sulfoxaflor elicited very high amplitude (efficacy) currents. Sulfoximine analogs of sulfoxaflor were also agonists on Dα2/β2 nAChRs, but none produced maximal currents equivalent to sulfoxaflor nor were any as toxic to GPAs. Additionally, except for clothianidin, none of the neonicotinoids produced maximal currents as large as those produced by sulfoxaflor. These data suggest that the potent insecticidal activity of sulfoxaflor may be due to its very high efficacy at nAChRs. In contrast, sulfoxaflor displaced [(3)H]imidacloprid (IMI) from GPA nAChR membrane preparations with weak affinity compared to most of the neonicotinoids examined. The nature of the interaction of sulfoxaflor with nAChRs apparently differs from that of IMI and other neonicotinoids, and when coupled with other known characteristics (novel chemical structure, lack of cross-resistance, and metabolic stability), indicate that sulfoxaflor represents a significant new insecticide option for the control of sap-feeding insects.


Bioorganic & Medicinal Chemistry | 2016

SAR studies directed toward the pyridine moiety of the sap-feeding insecticide sulfoxaflor (Isoclast™ active).

Michael R. Loso; Zoltan Benko; Ann M. Buysse; Timothy C. Johnson; Benjamin M. Nugent; Richard B. Rogers; Thomas C. Sparks; Nick X. Wang; Gerald B. Watson; Yuanming Zhu

Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor.


Pest Management Science | 2017

Studies toward understanding the SAR around the sulfoximine moiety of the sap-feeding insecticide sulfoxaflor.

Ann M. Buysse; Benjamin M. Nugent; Nick X. Wang; Zoltan Benko; Nneka Breaux; Richard Rogers; Yuanming Zhu

BACKGROUND The discovery of sulfoxaflor (Isoclast™ active) stemmed from a novel scaffold-based approach toward identifying bioactive molecules. It exhibits broad-spectrum control of many sap-feeding insect pests, including aphids, whiteflies, hoppers and Lygus. Systematic modifications of the substituents flanking each side of the sulfoximine moiety were carried out to determine whether these changes would improve potency. RESULTS Structure-activity relationship (SAR) studies showed that, with respect to the methylene linker, both mono- and disubstitution with alkyl groups of varying sizes as well as cyclic analogs exhibited excellent control of cotton aphids. However, against green peach aphids a decrease in activity was observed with substituents larger than ethyl as well as larger cycloalkyl groups. At the terminal tail there appeared to be a narrow steric tolerance as well, with linear groups or small rings more active against green peach aphids than bulkier groups. CONCLUSION A novel series of compounds exploring the substituents flanking the sulfoximine moiety of sulfoxaflor were prepared and tested for bioactivity against cotton aphids and green peach aphids. SAR studies indicated that a decrease in green peach aphid potency was observed at the methylene linker as well as at the terminal tail with bulkier substituents. A quantitative structure-activity relationship analysis of the compounds revealed significant correlation of activity with two molecular descriptors, vol (volume of a molecule) and GCUT_SMR_3 (molar refractivity). This predictive model helps to explain the observed activity with the various substituents.


Archive | 2007

A method to control insects resistant to common insecticides

Jim X. Huang; Richard B. Rogers; Nailah Orr; Thomas C. Sparks; James M. Gifford; Michael R. Loso; Yuanming Zhu; Thomas Meade


Archive | 2007

Insecticidal N-substituted (6-haloalkylpyridin-3-yl)alkyl sulfoximines

Michael R. Loso; Benjamin M. Nugent; Jim X. Huang; Richard B. Rogers; Yuanming Zhu; James M. Renga; Vidyadhar B. Hegde; Joseph J. Demark


Archive | 2005

Insecticidal N-substituted sulfoximines

Yuanming Zhu; Richard B. Rogers; Jim X. Huang


Archive | 2009

5,8-difluoro-4-(2-(4-(heteroaryloxy)-phenyl)ethylamino)quinazolines and their use as agrochemicals

William Kirkland Brewster; Carla Jean Rasmussen Klittich; Chenglin Yao; Yuanming Zhu


Archive | 2010

Heteroaryl (substituted)alkyl N-substituted sulfoximines as insecticides

Michael R. Loso; Benjamin M. Nugent; Yuanming Zhu; Richard B. Rogers; Jim X. Huang; James M. Renga; Gregory T. Whiteker; Nneka Breaux; John F. Daeuble

Collaboration


Dive into the Yuanming Zhu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge