Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanqing Wen is active.

Publication


Featured researches published by Yuanqing Wen.


Materials Science and Engineering: C | 2017

Facile fabrication of luminescent polymeric nanoparticles containing dynamic linkages via a one-pot multicomponent reaction: Synthesis, aggregation-induced emission and biological imaging

Ruming Jiang; Meiying Liu; Cong Li; Qiang Huang; Hongye Huang; Qing Wan; Yuanqing Wen; Qian-yong Cao; Xiaoyong Zhang; Yen Wei

Luminescent polymeric nanoparticles (LPNs) with aggregation-induced emission (AIE) feature have emerged as the most promising candidates for biological imaging owing to their unique AIE feature, great water dispersity, strong fluorescence, low cytotoxicity and biocompatibility. Although numerous successful strategies for construction of AIE-active LPNs have been developed, the preparation of dynamic linkages containing AIE-active LPNs based on multicomponent reactions has been rarely reported. In this work, we report a facile method for the formation of AIE-active LPNs via a one-pot conjugation of PEG-B(OH)2, 1-thioglycerol and AIE-active dye PhE-alc in short time under rather mild reaction conditions (e.g. ambient temperature, air atmosphere, absent of metal catalysts and in the present of water). The successful formation of AIE-active mPEG-PhE LPNs was confirmed by different characterization techniques in details. The great optical and biological properties certified their applicable for biological imaging application. More importantly, the novel method for the formation of AIE-active LPNs is rather simple, high efficiency and atom economy, which greatly enriched their practical biomedical applications.


Materials Science and Engineering: C | 2017

Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method

Qian-yong Cao; Ruming Jiang; Meiying Liu; Qing Wan; Dazhuang Xu; Jianwen Tian; Hongye Huang; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

The development of simple and effective methods for synthesis of fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) plays an important role for the biomedical applications of AIE-active FPNs. In present work, we developed a facile strategy for the fabrication of AIE-active FPNs by a post-polymerization method based on the microwave-assisted Kabachnik-Fields (KF) reaction, which can conjugate with poly(PEGMA-NH2), AIE-active dye (TPE-CHO) and diethyl phosphate (DP) under microwave irradiation within 5min. The characterization results confirm that PEGMA-TPE FPNs are successfully prepared through the microwave-assisted KF reaction. The resultant AIE-active FPNs show high water dispersity, intensive fluorescence and low cytotoxicity. These features make these AIE-active FPNs great potential for biomedical applications. Moreover, the microwave-assisted KF reaction is simple, fast, atom economy that should be a general strategy for the fabrication of various multifunctional AIE-active FPNs. We believe this work will open up a new avenue for the preparation of AIE-active functional materials with great potential for different applications.


Materials Science and Engineering: C | 2017

A facile one-pot Mannich reaction for the construction of fluorescent polymeric nanoparticles with aggregation-induced emission feature and their biological imaging

Ruming Jiang; Han Liu; Meiying Liu; Jianwen Tian; Qiang Huang; Hongye Huang; Yuanqing Wen; Qian-yong Cao; Xiaoyong Zhang; Yen Wei

Multicomponent reactions (MCRs) have recently attracted great attention as one of the most important tools for the construction of various organic compounds in modern organic chemistry. In this work, we introduced an efficient one-pot strategy to successfully fabricate the fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) characteristic via the conjugation of hyperbranched polyamino compound polyethyleneimine (PEI), AIE dye (named as PhE-OH) and paraformaldehyde (PF) through a Mannich reaction. The final amphiphilies (PEI-PF-PhE) can self-assemble into micelles in aqueous solution. We demonstrated PEI-PF-PhE FPNs showed high water dispersity, intense orange-yellow fluorescence, excellent photostability, low toxicity and high cell imaging performance. As compared with other construction strategies, the one-pot Mannich reaction possesses a number of advantages, such as simplicity, atom economy, high-efficiency and multifunctional potential. Combined with the remarkable properties of the AIE-active FPNs and the one-pot Mannich reaction, we could expect that the strategy developed in this work should be a useful tool for construction of various AIE-active functional materials for biomedical applications.


Materials Science and Engineering: C | 2017

Preparation of AIE-active fluorescent polymeric nanoparticles through a catalyst-free thiol-yne click reaction for bioimaging applications

Qian-yong Cao; Ruming Jiang; Meiying Liu; Qing Wan; Dazhuang Xu; Jianwen Tian; Hongye Huang; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

Fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) characteristics have attracted much attention for biomedical applications due to their remarkable AIE feature, high water dispersity and desirable biocompatibility. The development of facile and effective strategies for fabrication of these AIE-active FPNs therefore should be of great importance for their biomedical applications. In this work, we reported that a catalyst-free thiol-yne click reaction can be utilized for fabrication of AIE-active FPNs in short reaction time and even without protection of inert gas. The results indicated that the obtained AIE-active amphiphilic copolymers (PEGMA-PhE) can readily self-assemble into luminescent nanoparticles (PEGMA-PhE FPNs) with high water dispersity, uniform size and morphology, red fluorescence. Cell viability examination and cell uptake behavior of PEGMA-PhE FPNs confirmed that these AIE-active FPNs possess low toxicity towards cells and can be easily internalized by cells through non-specific route. Therefore the remarkable properties of PEGMA-PhE FPNs such as high water dispersity, AIE-active fluorescence and nanoscale size as well as excellent biocompatibility make them promising for biomedical applications.


Materials Science and Engineering: C | 2017

Direct encapsulation of AIE-active dye with β cyclodextrin terminated polymers: Self-assembly and biological imaging

Hongye Huang; Dazhuang Xu; Meiying Liu; Ruming Jiang; Liucheng Mao; Qiang Huang; Qing Wan; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

Aggregation-induced emission (AIE) phenomenon has attracted great attention recently and been extensively explored for biomedical applications. Nevertheless, the direct utilization of AIE-active dyes for biomedical applications has demonstrated to be enormous challenge owing to the hydrophobic nature of these AIE-active dyes. In this work, we reported the fabrication of amphiphilic AIE-active copolymers through the specific host-guest interaction between β cyclodextrin (β-CD) and an adamantine terminating tetraphenylethene derivative (TPE-Ad). In this construction system, β-CD was acted as the bridge to link TPE-Ad with PEG. The TPE-β-CD-PEG copolymers were characterized by various equipments in detail. Cytocompatibility and cell uptake behavior of TPE-β-CD-PEG were also examined to evaluate their biomedical application potential. Results demonstrated that TPE-β-CD-PEG copolymers were prone to self-assemble into luminescent nanoparticles, which exhibited high water dispersity, AIE feature and excellent biocompatibility. These features endowed TPE-β-CD-PEG great potential for biomedical applications.


Journal of Colloid and Interface Science | 2017

Synthesis of functionalized MgAl-layered double hydroxides via modified mussel inspired chemistry and their application in organic dye adsorption

Jiao Zhao; Qiang Huang; Meiying Liu; Yanfeng Dai; Junyu Chen; Hongye Huang; Yuanqing Wen; Xiaoli Zhu; Xiaoyong Zhang; Yen Wei

In this paper, a novel strategy for the preparation of poly(levodopa) functionalized MgAl-layered double hydroxide (PDOPA-f-LDH) was developed based on the modified mussel inspired chemistry. The utilization of PDOPA-f-LDH for the removal of methylene blue (MB) from aqueous solution was also examined. Taken advantage of the self-polymerization of levodopa (DOPA) in alkaline solution and the strong affinity of catechol groups to the substrate surface, the LDH was covered homogeneously by a layer of polymer coating of DOPA, leading to the functionalization toward LDH. The structure, surface morphology, thermostability and elemental composition of as-prepared PDOPA-f-LDH were investigated by the transmission electron microscope, scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. Besides, the surface charge of the PDOPA-f-LDH was also investigated using zeta potential. The effects of various parameters, including contact time, initial MB concentration, solution pH and temperature, on the adsorption of MB onto PDOPA-f-LDH were systematically investigated. Results show that the adsorption capacity of functionalized LDH at 25°C could reach up to 102mg/g, which is much higher than that of pure LDH in the same experimental conditions. The adsorption kinetics and isotherm of MB adsorption were studied in batch experiments. The pseudo-second-order model is found to be the best to describe the adsorption kinetics. The isotherm result shows that the Freundlich isotherm is the better-fit-isotherm model to represent the equilibrium data. The values of thermodynamic parameters, including enthalpy change ΔH0, entropy change ΔS0 and Gibbs free energy change ΔG0, were also determined. All the ΔG0 values are negative; the ΔH0 and ΔS0 values of PDOPA-f-LDH were -7.824kJmol-1 and -0.01562kJmol-1K-1, respectively. And the activation energy of system (Ea) is calculated as 24.69kJmol-1. The fact suggests that the MB adsorption on PDOPA-f-LDH is a spontaneous and exothermic process. These obtained results indicate that the prepared PDOPA-f-LDH could be used as an interesting adsorbent with great potential to adsorb the cationic dyeing pollutants from aqueous media.


Materials Science and Engineering: C | 2017

The one-step acetalization reaction for construction of hyperbranched and biodegradable luminescent polymeric nanoparticles with aggregation-induced emission feature

Liucheng Mao; Meiying Liu; Ruming Jiang; Qiang Huang; Yanfeng Dai; Jianwen Tian; Yingge Shi; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

The development of luminescent bioprobes based on organic dyes with aggregation-induced emission (AIE) characteristic has attracted great attention in recent years. In this work, we reported for the first time that AIE-active luminescent polymeric nanoparticles (LPNs) can be facilely prepared via a one-step acetalization reaction, which can be used to conjugate the aldehyde group containing AIE dye (PTH-CHO) and methoxypolyethylene glycols (mPEG-CHO) with a commercially available dendritic polyester (H40) using p-toluenesulfonic acid (TsOH) as the catalyst. As-prepared star-shaped hyperbranched luminescent polymers (named as H40-mPEG-mPTH) were prone to self-assemble into core-shell nanoparticles in aqueous solution because of their amphiphilic structure, in which hydrophobic components (such as PTH-CHO and H40) were encapsulated in the core while the hydrophilic components (mPEG-CHO) were acted as the shell. The final AIE-active H40-mPEG-mPTH LPNs displayed uniform spherical structure, strong fluorescence, excellent photostability and high water dispersity. Furthermore, biological evaluation results demonstrated that H40-mPEG-mPTH LPNs possess low toxicity and excellent biocompatibility, indicating their great potential for biomedical applications. Taken together, we reported a novel strategy for the construction of hyperbranched and biodegradable LPNs with AIE feature through a one-step acetalization reaction, which can be also utilized for construction of many other AIE-active LPNs with a variety structure and properties.


Materials Science and Engineering: C | 2017

Construction of biodegradable and biocompatible AIE-active fluorescent polymeric nanoparticles by Ce(IV)/HNO3 redox polymerization in aqueous solution

Shengxian Yu; Dazhuang Xu; Qing Wan; Meiying Liu; Jianwen Tian; Qiang Huang; Fengjie Deng; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

Aggregation-induced emission (AIE) active fluorescence polymeric nanoparticles (FPNs) have recently received increasing interests for biomedical applications such as cell imaging, drug delivery, disease diagnosis and treatment. Fabricated strategies of AIE-active FPNs with high efficiency, simplification and tenderness are still passionately pursued to promote the development of theranostic systems. In this work, we develop a facile method for the preparation of AIE-active FPNs by adopting Ce(IV)/HNO3 redox polymerization under near room temperature. Thus-prepared FPNs (named as PEG-PLC-1) possess unique AIE feature, great water dispersity, excellent biocompatibility and biodegradability because of the conjugation of ultra-bright AIE dye (PhE-alc) and biodegradable PEG-PCL linear copolymers. The 1H nuclear magnetic resonance (NMR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, transmission electron microscopy (TEM), UV-Visible and fluorescence spectrometers were used to confirm the successful fabrication of AIE-active FPNs. Cell viability and cellular uptake behavior of PEG-PLC-1 FPNs were further investigated for their potential biomedical applications. Results demonstrated that PEG-PLC-1 FPNs are high water dispersity, intensive luminescence and low cytotoxicity, making them very attractive for biomedical applications. More importantly, the method for the fabrication of AIE-active biodegradable FPNs can be occurred under rather facile conditions (e.g., low temperature, free of metal catalysts, common chain transfer agent and aqueous solution) and are specially used for fabrication of AIE-active polysaccharides with poor organic solubility.


Talanta | 2017

A new strategy for fabrication of water dispersible and biodegradable fluorescent organic nanoparticles with AIE and ESIPT characteristics and their utilization for bioimaging

Dazhuang Xu; Meiying Liu; Hui Zou; Jianwen Tian; Hongye Huang; Qing Wan; Yanfeng Dai; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

Fluorescence probes play a crucial role in optical imaging for visualization of complex biological processes. As compared with conventional organic fluorogens, the probes with aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) characteristics show significant advantages in high quantum yield at concentrated and aggregated state, large Stokes shift and low cytotoxicity. However, the synthesis of AIE-active fluorescent probes through the ESIPT mechanism has received only very limited attention. On the other hand, the preparation of biodegradable fluorescent probes through the ESIPT mechanism has not been demonstrated thus far. In this work, we reported for the first time that water dispersible and biodegradable fluorescent polymeric nanoparticles with AIE and ESIPT characteristics could be facilely obtained through conjugation of 2,4-Dihydroxybenzophenone based benzophenone azine (BPA) and polyethylene glycol (PEG) using hexamethylene diisocyanate. The final copolymers contained hydrophilic and biocompatible PEG and biodegradable urethane linkage are readily self-assembled into core-shell nanostructures. Moreover, the self-assembled BPA-PEG2000 fluorescent organic nanoparticles (FONs) displayed obvious AIE feature, high water dispersibility, superb biocompatibility, biodegradability and excellent cell dyeing performance. All of the above properties implied that BPA-PEG2000 FONs are promising candidates for a variety of biomedical applications.


Materials Science and Engineering: C | 2017

Photo-induced surface grafting of phosphorylcholine containing copolymers onto mesoporous silica nanoparticles for controlled drug delivery

Liucheng Mao; Meiying Liu; Long Huang; Dazhuang Xu; Qing Wan; Guangjian Zeng; Yanfeng Dai; Yuanqing Wen; Xiaoyong Zhang; Yen Wei

Surface modification of mesoporous silica nanoparticles (MSNs) with functional polymers has become one of the most interest topics over the last decade. Among various surface modification strategies, surface-initiated atom transfer radical polymerization (ATRP) has been regarded as one of the most effective methods. However, the typical ATRP strategy is relied on the transition metal ions and their organic ligands as the polymerization catalyst systems. In this work, a novel surface-initiated ATRP method was established for surface functionalization of MSNs using 10-Phenylphenothiazine (PTH) as the catalyst, 2-methacryloyloxyethyl phosphorylcholine (MPC) and itaconic acid (IA) as the monomers. We demonstrated that photo-induced ATRP is very effective for preparation of polymer functionalized MSNs (MSNs-NH2-poly(IA-co-MPC)). More importantly, MSNs-NH2-poly(IA-co-MPC) displayed well water dispersity, low cytotoxicity, high loading capability and controlled release behavior towards cisplatin. Furthermore, the method based on photo-induced surface-initiated ATRP could effectively overcome the drawbacks of conventional ATRP, which may involve in the residue of transition metal ions, high polymerization temperature, long polymerization term and complex experimental procedure. Therefore, this strategy described above is of great interest for fabrication of multifunctional polymer composites for various applications.

Collaboration


Dive into the Yuanqing Wen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge