Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanqing Yan is active.

Publication


Featured researches published by Yuanqing Yan.


Diabetes | 2012

Liver X Receptor Modulates Diabetic Retinopathy Outcome in a Mouse Model of Streptozotocin-Induced Diabetes

Sugata Hazra; Adil Rasheed; Ashay D. Bhatwadekar; Xiaoxin Wang; Lynn C. Shaw; Monika Patel; Sergio Caballero; Lilia Magomedova; Nathaniel Solis; Yuanqing Yan; Weidong Wang; Jeffrey S. Thinschmidt; Amrisha Verma; Qiuhong Li; Moshe Levi; Carolyn L. Cummins; Maria B. Grant

Endothelial progenitor cells (EPCs), critical for mediating vascular repair, are dysfunctional in a hyperglycemic and/or hypercholesterolemic environment. Their dysfunction contributes to the progression of diabetic macro- and microvascular complications. Activation of “cholesterol-sensing” nuclear receptors, the liver X receptors (LXRα/LXRβ), protects against atherosclerosis by transcriptional regulation of genes important in promoting cholesterol efflux and inhibiting inflammation. We hypothesized that LXR activation with a synthetic ligand would correct diabetes-induced EPC dysfunction and improve diabetic retinopathy. Studies were performed in streptozotocin (STZ)-injected DBA/2J mice fed a high-fat Western diet (DBA/STZ/WD) and treated with the LXR agonist GW3965 and in LXRα−/−, LXRβ−/−, and LXRα/β−/− mice. Retinas were evaluated for number of acellular capillaries and glial fibrillary acidic protein (GFAP) immunoreactivity. Bone marrow EPCs were analyzed for migratory function and gene expression. Compared with vehicle-treated DBA/STZ/WD mice, GW3965 treated mice showed fewer acellular capillaries and reduced GFAP expression. These mice also exhibited enhanced EPC migration and restoration of inflammatory and oxidative stress genes toward nondiabetic levels. LXRα−/−, LXRβ−/−, and LXRα/β−/− mice developed acellular capillaries and EPC dysfunction similar to the DBA/STZ/WD mice. These studies support a key role for LXR in retinal and bone marrow progenitor dysfunction associated with type 1 diabetes. LXR agonists may represent promising pharmacologic targets for correcting retinopathy and EPC dysfunction.


American Journal of Pathology | 2013

CNS Inflammation and Bone Marrow Neuropathy in Type 1 Diabetes

Ping Hu; Jeffrey S. Thinschmidt; Yuanqing Yan; Sugata Hazra; Ashay D. Bhatwadekar; Sergio Caballero; Tatiana Salazar; Jaleel Miyan; Wencheng Li; Andrei V. Derbenev; Andrea Zsombok; Maria Tikhonenko; James M. Dominguez; Susan P. McGorray; Daniel R. Saban; Michael E. Boulton; Julia V. Busik; Mohan K. Raizada; Tailoi Chan-Ling; Maria B. Grant

By using pseudorabies virus expressing green fluorescence protein, we found that efferent bone marrow-neural connections trace to sympathetic centers of the central nervous system in normal mice. However, this was markedly reduced in type 1 diabetes, suggesting a significant loss of bone marrow innervation. This loss of innervation was associated with a change in hematopoiesis toward generation of more monocytes and an altered diurnal release of monocytes in rodents and patients with type 1 diabetes. In the hypothalamus and granular insular cortex of mice with type 1 diabetes, bone marrow-derived microglia/macrophages were activated and found at a greater density than in controls. Infiltration of CD45(+)/CCR2(+)/GR-1(+)/Iba-1(+) bone marrow-derived monocytes into the hypothalamus could be mitigated by treatment with minocycline, an anti-inflammatory agent capable of crossing the blood-brain barrier. Our studies suggest that targeting central inflammation may facilitate management of microvascular complications.


Diabetes | 2013

Per2 Mutation Recapitulates the Vascular Phenotype of Diabetes in the Retina and Bone Marrow

Ashay D. Bhatwadekar; Yuanqing Yan; Xiaoping Qi; Jeffrey S. Thinschmidt; Matthew B. Neu; Sergio Li Calzi; Lynn C. Shaw; James M. Dominiguez; Julia V. Busik; Choogon Lee; Michael E. Boulton; Maria B. Grant

In this study, we assessed whether Per2 clock gene–mutant mice exhibit a vascular phenotype similar to diabetes. Per2 (B6.129-Per2tm1Drw/J) or wild-type control mice 4 and 12 months of age were used. To evaluate diabetes-like phenotype in Per2 mutant mice, retina was quantified for mRNA expression, and degree of diabetic retinopathy was evaluated. Bone marrow neuropathy was studied by staining femurs for tyrosine hydroxylase (TH) and neurofilament 200 (NF-200). The rate of proliferation and quantification of bone marrow progenitor cells (BMPCs) was performed, and a threefold decrease in proliferation and 50% reduction in nitric oxide levels were observed in Per2 mutant mice. TH-positive nerve processes and NF-200 staining were reduced in Per2 mutant mice. Both retinal protein and mRNA expression of endothelial nitric oxide synthase were decreased by twofold. Other endothelial function genes (VEGFR2, VEGFR1) were downregulated (1.5–2-fold) in Per2 mutant retinas, whereas there was an upregulation of profibrotic pathway mediated by transforming growth factor-β1. Our studies suggest that Per2 mutant mice recapitulate key aspects of diabetes without the metabolic abnormalities, including retinal vascular damage, neuronal loss in the bone marrow, and diminished BMPC function.


Investigative Ophthalmology & Visual Science | 2014

Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina.

Qi Wang; Svetlana Bozack; Yuanqing Yan; Michael E. Boulton; Maria B. Grant; Julia V. Busik

PURPOSE Chronic inflammation and dysregulation of circadian rhythmicity are involved in the pathogenesis of diabetic retinopathy. MicroRNAs (miRNAs) can regulate inflammation and circadian clock machinery. We tested the hypothesis that altered daily rhythm of miR-146a expression in diabetes contributes to retinal inflammation. METHODS Nondiabetic and STZ-induced diabetic rats kept in 12/12 light/dark cycle were killed every 2 hours over a 72-hour period. Human retinal endothelial cells (HRECs) were synchronized with dexamethasone. Expression of miR-146a, IL-1 receptor-associated kinase 1 (IRAK1), IL-1β, VEGF and ICAM-1, as well as clock genes was examined by real-time PCR and Western blot. To modulate expression levels of miR-146a, mimics and inhibitors were used. RESULTS Diabetes inhibited amplitude of negative arm (per1) and enhanced amplitude of the positive arm (bmal1) of clock machinery in retina. In addition to clock genes, miR-146a and its target gene IRAK1 also exhibited daily oscillations in antiphase; however, these patterns were lost in diabetic retina. This loss of rhythmic pattern was associated with an increase in ICAM-1, IL-β, and VEGF expression. Human retinal endothelial cells had robust miR-146a expression that followed circadian oscillation pattern; however, HRECs isolated from diabetic donors had reduced miR-146a amplitude but increased amplitude of IRAK1 and ICAM-1. In HRECs, miR-146a mimic or inhibitor caused 1.6- and 1.7-fold decrease or 1.5- and 1.6-fold increase, respectively, in mRNA and protein expression levels of ICAM-1 after 48 hours. CONCLUSIONS Diabetes-induced dysregulation of daily rhythms of miR-146a and inflammatory pathways under miR-146a control have potential implications for the development of diabetic retinopathy.


PLOS ONE | 2013

Dicer Expression Exhibits a Tissue-Specific Diurnal Pattern That Is Lost during Aging and in Diabetes

Yuanqing Yan; Tatiana Salazar; James M. Dominguez; Dung V. Nguyen; Sergio Li Calzi; Ashay D. Bhatwadekar; Xiaoping Qi; Julia V. Busik; Michael E. Boulton; Maria B. Grant

Dysregulation of circadian rhythmicity is identified as a key factor in disease pathogenesis. Circadian rhythmicity is controlled at both a transcriptional and post-transcriptional level suggesting the role of microRNA (miRNA) and double-stranded RNA (dsRNA) in this process. Endonuclease Dicer controls miRNA and dsRNA processing, however the role of Dicer in circadian regulation is not known. Here we demonstrate robust diurnal oscillations of Dicer expression in central and peripheral clock control systems including suprachiasmatic nucleolus (SCN), retina, liver, and bone marrow (BM). The Dicer oscillations were either reduced or phase shifted with aging and Type 2 diabetes. The decrease and phase shift of Dicer expression was associated with a similar decrease and phase shift of miRNAs 146a and 125a-5p and with an increase in toxic Alu RNA. Restoring Dicer levels and the diurnal patterns of Dicer-controlled miRNA and RNA expression may provide new therapeutic strategies for metabolic disease and aging-associated complications.


PLOS ONE | 2012

Protection of blood retinal barrier and systemic vasculature by insulin-like growth factor binding protein-3

Yagna P. R. Jarajapu; Jun Cai; Yuanqing Yan; Sergio Li Calzi; Jennifer L. Kielczewski; Ping Hu; Lynn C. Shaw; Sue M. Firth; Tailoi Chan-Ling; Michael E. Boulton; Robert C. Baxter; Maria B. Grant

Previously, we showed that insulin growth factor (IGF)-1 binding protein-3 (IGFBP-3), independent of IGF-1, reduces pathological angiogenesis in a mouse model of the oxygen-induced retinopathy (OIR). The current study evaluates novel endothelium-dependent functions of IGFBP-3 including blood retinal barrier (BRB) integrity and vasorelaxation. To evaluate vascular barrier function, either plasmid expressing IGFBP-3 under the regulation of an endothelial-specific promoter or a control plasmid was injected into the vitreous humor of mouse pups (P1) and compared to the non-injected eyes of the same pups undergoing standard OIR protocol. Prior to sacrifice, the mice were given an injection of horseradish peroxidase (HRP). IGFBP-3 plasmid-injected eyes displayed near-normal vessel morphology and enhanced vascular barrier function. Further, in vitro IGFBP-3 protects retinal endothelial cells from VEGF-induced loss of junctional integrity by antagonizing the dissociation of the junctional complexes. To assess the vasodilatory effects of IGFBP-3, rat posterior cerebral arteries were examined in vitro. Intraluminal IGFBP-3 decreased both pressure- and serotonin-induced constrictions by stimulating nitric oxide (NO) release that were blocked by L-NAME or scavenger receptor-B1 neutralizing antibody (SRB1-Ab). Both wild-type and IGF-1-nonbinding mutant IGFBP-3 (IGFBP-3NB) stimulated eNOS activity/NO release to a similar extent in human microvascular endothelial cells (HMVECs). NO release was neither associated with an increase in intracellular calcium nor decreased by Ca2+/calmodulin-dependent protein kinase II (CamKII) blockade; however, dephosphorylation of eNOS-Thr495 was observed. Phosphatidylinositol 3-kinase (PI3K) activity and Akt-Ser473 phosphorylation were both increased by IGFBP-3 and selectively blocked by the SRB1-Ab or PI3K blocker LY294002. In conclusion, IGFBP-3 mediates protective effects on BRB integrity and mediates robust NO release to stimulate vasorelaxation via activation of SRB1. This response is IGF-1- and calcium-independent, but requires PI3K/Akt activation, suggesting that IGFBP-3 has novel protective effects on retinal and systemic vasculature and may be a therapeutic candidate for ocular complications such as diabetic retinopathy.


PLOS ONE | 2014

Changes in the Daily Rhythm of Lipid Metabolism in the Diabetic Retina

Qi Wang; Maria Tikhonenko; Svetlana Bozack; Todd A. Lydic; Lily Yan; Nicholas Panchy; Kelly M. McSorley; Matthew S. Faber; Yuanqing Yan; Michael E. Boulton; Maria B. Grant; Julia V. Busik

Disruption of circadian regulation was recently shown to cause diabetes and metabolic disease. We have previously demonstrated that retinal lipid metabolism contributed to the development of diabetic retinopathy. The goal of this study was to determine the effect of diabetes on circadian regulation of clock genes and lipid metabolism genes in the retina and retinal endothelial cells (REC). Diabetes had a pronounced inhibitory effect on the negative clock arm with lower amplitude of the period (per) 1 in the retina; lower amplitude and a phase shift of per2 in the liver; and a loss of cryptochrome (cry) 2 rhythmic pattern in suprachiasmatic nucleus (SCN). The positive clock arm was increased by diabetes with higher amplitude of circadian locomotor output cycles kaput (CLOCK) and brain and muscle aryl-hydrocarbon receptor nuclear translocator-like 1 (bmal1) and phase shift in bmal1 rhythmic oscillations in the retina; and higher bmal1 amplitude in the SCN. Peroxisome proliferator-activated receptor (PPAR) α exhibited rhythmic oscillation in retina and liver; PPARγ had lower amplitude in diabetic liver; sterol regulatory element-binding protein (srebp) 1c had higher amplitude in the retina but lower in the liver in STZ- induced diabetic animals. Both of Elongase (Elovl) 2 and Elovl4 had a rhythmic oscillation pattern in the control retina. Diabetic retinas lost Elovl4 rhythmic oscillation and had lower amplitude of Elovl2 oscillations. In line with the in vivo data, circadian expression levels of CLOCK, bmal1 and srebp1c had higher amplitude in rat REC (rREC) isolated from diabetic rats compared with control rats, while PPARγ and Elovl2 had lower amplitude in diabetic rREC. In conclusion, diabetes causes dysregulation of circadian expression of clock genes and the genes controlling lipid metabolism in the retina with potential implications for the development of diabetic retinopathy.


Signal Transduction and Targeted Therapy | 2016

Neuroretinal hypoxic signaling in a new preclinical murine model for proliferative diabetic retinopathy

Katherine J. Wert; Vinit B. Mahajan; Lijuan Zhang; Yuanqing Yan; Yao Li; Joaquin Tosi; Chun Wei Hsu; Takayuki Nagasaki; Kerstin M. Janisch; Maria B. Grant; MaryAnn Mahajan; Alexander G. Bassuk; Stephen H. Tsang

Diabetic retinopathy (DR) affects approximately one-third of diabetic patients and, if left untreated, progresses to proliferative DR (PDR) with associated vitreous hemorrhage, retinal detachment, iris neovascularization, glaucoma and irreversible blindness. In vitreous samples of human patients with PDR, we found elevated levels of hypoxia inducible factor 1 alpha (HIF1α). HIFs are transcription factors that promote hypoxia adaptation and have important functional roles in a wide range of ischemic and inflammatory diseases. To recreate the human PDR phenotype for a preclinical animal model, we generated a mouse with neuroretinal-specific loss of the von Hippel Lindau tumor suppressor protein, a protein that targets HIF1α for ubiquitination. We found that the neuroretinal cells in these mice overexpressed HIF1α and developed severe, irreversible ischemic retinopathy that has features of human PDR. Rapid progression of retinopathy in these mutant mice should facilitate the evaluation of therapeutic agents for ischemic and inflammatory blinding disorders. In addition, this model system can be used to manipulate the modulation of the hypoxia signaling pathways, for the treatment of non-ocular ischemic and inflammatory disorders.


Diabetes | 2018

Restructuring of the Gut Microbiome by Intermittent Fasting Prevents Retinopathy and Prolongs Survival in db/db Mice

Eleni Beli; Yuanqing Yan; Leni Moldovan; Cristiano P. Vieira; Ruli Gao; Yaqian Duan; Ram Prasad; Ashay D. Bhatwadekar; Fletcher A. White; Steven D. Townsend; Luisa Chan; Caitlin N. Ryan; Daniel Morton; Emil G. Moldovan; Fang-I Chu; Gavin Y. Oudit; Hartmut Derendorf; Luciano Adorini; Xiaoxin X. Wang; Carmella Evans-Molina; Raghavendra G. Mirmira; Michael E. Boulton; Mervin C. Yoder; Qiuhong Li; Moshe Levi; Julia V. Busik; Maria B. Grant

Intermittent fasting (IF) protects against the development of metabolic diseases and cancer, but whether it can prevent diabetic microvascular complications is not known. In db/db mice, we examined the impact of long-term IF on diabetic retinopathy (DR). Despite no change in glycated hemoglobin, db/db mice on the IF regimen displayed significantly longer survival and a reduction in DR end points, including acellular capillaries and leukocyte infiltration. We hypothesized that IF-mediated changes in the gut microbiota would produce beneficial metabolites and prevent the development of DR. Microbiome analysis revealed increased levels of Firmicutes and decreased Bacteroidetes and Verrucomicrobia. Compared with db/db mice on ad libitum feeding, changes in the microbiome of the db/db mice on IF were associated with increases in gut mucin, goblet cell number, villi length, and reductions in plasma peptidoglycan. Consistent with the known modulatory effects of Firmicutes on bile acid (BA) metabolism, measurement of BAs demonstrated a significant increase of tauroursodeoxycholate (TUDCA), a neuroprotective BA, in db/db on IF but not in db/db on AL feeding. TGR5, the TUDCA receptor, was found in the retinal primary ganglion cells. Expression of TGR5 did not change with IF or diabetes. However, IF reduced retinal TNF-α mRNA, which is a downstream target of TGR5 activation. Pharmacological activation of TGR5 using INT-767 prevented DR in a second diabetic mouse model. These findings support the concept that IF prevents DR by restructuring the microbiota toward species producing TUDCA and subsequent retinal protection by TGR5 activation.


Molecular Therapy | 2017

Systemic Injection of RPE65-Programmed Bone Marrow-Derived Cells Prevents Progression of Chronic Retinal Degeneration

Xiaoping Qi; S. Louise Pay; Yuanqing Yan; James D. Thomas; Alfred S. Lewin; Lung-Ji Chang; Maria B. Grant; Michael E. Boulton

Bone marrow stem and progenitor cells can differentiate into a range of non-hematopoietic cell types, including retinal pigment epithelium (RPE)-like cells. In this study, we programmed bone marrow-derived cells (BMDCs) ex vivo by inserting a stable RPE65 transgene using a lentiviral vector. We tested the efficacy of systemically administered RPE65-programmed BMDCs to prevent visual loss in the superoxide dismutase 2 knockdown (Sod2 KD) mouse model of age-related macular degeneration. Here, we present evidence that these RPE65-programmed BMDCs are recruited to the subretinal space, where they repopulate the RPE layer, preserve the photoreceptor layer, retain the thickness of the neural retina, reduce lipofuscin granule formation, and suppress microgliosis. Importantly, electroretinography and optokinetic response tests confirmed that visual function was significantly improved. Mice treated with non-modified BMDCs or BMDCs pre-programmed with LacZ did not exhibit significant improvement in visual deficit. RPE65-BMDC administration was most effective in early disease, when visual function and retinal morphology returned to near normal, and less effective in late-stage disease. This experimental paradigm offers a minimally invasive cellular therapy that can be given systemically overcoming the need for invasive ocular surgery and offering the potential to arrest progression in early AMD and other RPE-based diseases.

Collaboration


Dive into the Yuanqing Yan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julia V. Busik

Michigan State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Choogon Lee

Florida State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Moshe Levi

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge