Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuanzhi Lao is active.

Publication


Featured researches published by Yuanzhi Lao.


Journal of Oncology | 2012

Akt: A Double-Edged Sword in Cell Proliferation and Genome Stability

Naihan Xu; Yuanzhi Lao; Yaou Zhang; David A. Gillespie

The Akt family of serine/threonine protein kinases are key regulators of multiple aspects of cell behaviour, including proliferation, survival, metabolism, and tumorigenesis. Growth-factor-activated Akt signalling promotes progression through normal, unperturbed cell cycles by acting on diverse downstream factors involved in controlling the G1/S and G2/M transitions. Remarkably, several recent studies have also implicated Akt in modulating DNA damage responses and genome stability. High Akt activity can suppress ATR/Chk1 signalling and homologous recombination repair (HRR) via direct phosphorylation of Chk1 or TopBP1 or, indirectly, by inhibiting recruitment of double-strand break (DSB) resection factors, such as RPA, Brca1, and Rad51, to sites of damage. Loss of checkpoint and/or HRR proficiency is therefore a potential cause of genomic instability in tumor cells with high Akt. Conversely, Akt is activated by DNA double-strand breaks (DSBs) in a DNA-PK- or ATM/ATR-dependent manner and in some circumstances can contribute to radioresistance by stimulating DNA repair by nonhomologous end joining (NHEJ). Akt therefore modifies both the response to and repair of genotoxic damage in complex ways that are likely to have important consequences for the therapy of tumors with deregulation of the PI3K-Akt-PTEN pathway.


Autophagy | 2014

Hypoxia-induced MIR155 is a potent autophagy inducer by targeting multiple players in the MTOR pathway

Gang Wan; Weidong Xie; Zhenyan Liu; Wei Xu; Yuanzhi Lao; Nunu Huang; Kai Cui; Meijian Liao; Jie He; Yuyang Jiang; Burton B. Yang; Hong-Xi Xu; Naihan Xu; Yaou Zhang

Hypoxia activates autophagy, an evolutionarily conserved cellular catabolic process. Dysfunction in the autophagy pathway has been implicated in an increasing number of human diseases, including cancer. Hypoxia induces upregulation of a specific set of microRNAs (miRNAs) in a variety of cell types. Here, we describe hypoxia-induced MIR155 as a potent inducer of autophagy. Enforced expression of MIR155 increases autophagic activity in human nasopharyngeal cancer and cervical cancer cells. Knocking down endogenous MIR155 inhibits hypoxia-induced autophagy. We demonstrated that MIR155 targets multiple players in MTOR signaling, including RHEB, RICTOR, and RPS6KB2. MIR155 suppresses target-gene expression by directly interacting with their 3′ untranslated regions (UTRs), mutations of the binding sites abolish their MIR155 responsiveness. Furthermore, by downregulating MTOR signaling, MIR155 also attenuates cell proliferation and induces G1/S cell cycle arrest. Collectively, these data present a new role for MIR155 as a key regulator of autophagy via dysregulation of MTOR pathway.


Autophagy | 2014

The natural compound oblongifolin C inhibits autophagic flux and enhances antitumor efficacy of nutrient deprivation.

Yuanzhi Lao; Gang Wan; Zhenyan Liu; Xiaoyu Wang; Ping Ruan; Wei Xu; Danqing Xu; Weidong Xie; Yaou Zhang; Hong-Xi Xu; Naihan Xu

Metabolic stress induces autophagy as an alternative source of energy and metabolites. Insufficient autophagy in nutrient-deprived cancer cells would be beneficial for cancer therapy. Here, we performed a functional screen in search of novel autophagy regulators from natural products. We showed that oblongifolin C (OC), a natural small molecule compound extracted from Garcinia yunnanensis Hu, is a potent autophagic flux inhibitor. Exposure to OC results in an increased number of autophagosomes and impaired degradation of SQSTM1/p62. Costaining of GFP-LC3B with LysoTracker Red or LAMP1 antibody demonstrates that autophagosome-lysosome fusion is blocked by OC treatment. Furthermore, OC inhibits lysosomal proteolytic activity by altering lysosomal acidification and downregulating the expression of lysosomal cathepsins. Importantly, OC can eliminate the tolerance of cancer cells to nutrient starvation. Starvation dramatically increases the susceptibility of cancer cells to OC-induced CASP3-dependent apoptosis in vitro. Subsequent studies in xenograft mouse model showed that OC has anticancer potency as revealed by increased staining of cleaved CASP3, LC3 puncta, and SQSTM1, as well as reduced expression of lysosomal cathepsins. Combined treatment with OC and caloric restriction potentiates anticancer efficacy of OC in vivo. Collectively, these data demonstrated that OC is a novel autophagic flux inhibitor and might be useful in anticancer therapy.


Organic Letters | 2015

Hypersubones A and B, New Polycyclic Acylphloroglucinols with Intriguing Adamantane Type Cores from Hypericum subsessile

Yang Liao; Xia Liu; Jing Yang; Yuanzhi Lao; Xing-Wei Yang; Xiao-Nian Li; Jing-Jing Zhang; Zhi-Jie Ding; Hong-Xi Xu; Gang Xu

Hypersubones A and B (1, 2), two adamantane type polycyclic polyprenylated acylphloroglucinols possessing an unprecedented seco-adamantane architecture and a tetracyclo-[6.3.1.1(3,10).0(4,8)]-tridecane core combined with a peroxide ring, respectively, were isolated from Hypericum subsessile together with three analogues (3-5). Their structures were determined by extensive NMR spectroscopic analysis, ECD calculations, and single-crystal X-ray diffraction. Compound 2 exhibited significant cytotoxicities against four human cancer lines in vitro (IC50 0.07-7.52 μM).


Journal of Natural Products | 2012

Bioassay-Guided Isolation of Prenylated Xanthones and Polycyclic Acylphloroglucinols from the Leaves of Garcinia nujiangensis

Zhengxiang Xia; Dan-Dan Zhang; Shuang Liang; Yuanzhi Lao; Hong Zhang; Hongsheng Tan; Shilin Chen; Xin-Hong Wang; Hong-Xi Xu

Bioassay-guided fractionation of the acetone extract of the leaves of Garcinia nujiangensis resulted in the isolation of two new prenylated xanthones, nujiangexanthones A (1) and B (2), three new polycyclic polyprenylated acylphloroglucinols, nujiangefolins A-C (3-5), and 10 known related analogues. The structures of compounds 1-5 were elucidated by interpretation of their spectroscopic data. Compounds 3 and 4 are unusual polycyclic polyprenylated acylphloroglucinols in which the enol hydroxy group forms a six-membered ring with a benzene ring carbon. The compounds isolated were evaluated for their cytotoxic effects against 11 cancer cell lines and immortalized MIHA normal liver cells, and the test substances demonstrated selectivity toward the cancer cells. Isojacareubin (6) was found to be the most potent cytotoxic compound of those tested.


Journal of Natural Products | 2014

Cytotoxic and anti-inflammatory prenylated benzoylphloroglucinols and xanthones from the twigs of Garcinia esculenta.

Hong Zhang; Dan-Dan Zhang; Yuanzhi Lao; Wenwei Fu; Shuang Liang; Qing-Hong Yuan; Ling Yang; Hong-Xi Xu

Five new prenylated benzoylphloroglucinol derivatives, garciesculentones A-E (1-5), a new xanthone, garciesculenxanthone A (6), and 15 known compounds were isolated from the petroleum ether extract and the EtOAc-soluble fraction of a 80% (v/v) EtOH extract of Garcinia esculenta. The structures of the new compounds were elucidated by 1D- and 2D-NMR spectroscopic analysis and mass spectrometry. Experimental and calculated ECD and a convenient modified Moshers method were used to determine the absolute configurations. The cytotoxicity of these compounds were evaluated by MTT assay against three human cancer cell lines (HepG2, MCF-7, and MDA-MB-231) and against normal hepatic cells (HL-7702). In addition, these isolates were evaluated for their inhibitory effects on interferon-γ plus lipopolysaccharide-induced nitric oxide production in RAW264.7 cells.


Phytomedicine | 2015

Guttiferone K induces autophagy and sensitizes cancer cells to nutrient stress-induced cell death.

Man Wu; Yuanzhi Lao; Naihan Xu; Xiaoyu Wang; Hongsheng Tan; Wenwei Fu; Zhi-Xiu Lin; Hong-Xi Xu

BACKGROUND Medicinal plants have long been an excellent source of pharmaceutical agents. Autophagy, a catabolic degradation process through lysosomes, plays an important role in tumorigenesis and cancer therapy. PURPOSE Through a screen designed to identify autophagic regulators from a library of natural compounds, we found that Guttiferone K (GUTK) can activate autophagy in several cancer cell lines. The objective of this study is to investigate the mechanism by which GUTK sensitizes cancer cells to cell death in nutrient starvation condition. METHODS Cell death analysis was performed by propidium iodide staining with flow cytometry or Annexin V-FITC/PI staining assay. DCFH-DA staining was used for intracellular ROS measurement. Protein levels were analyzed by western blot analysis. Cell viability was measured by MTT assay. RESULTS Exposure to GUTK was observed to markedly induce GFP-LC3 puncta formation and activate the accumulation of LC3-II and the degradation of p62 in HeLa cells, suggesting that GUTK is an autophagy inducer. Importantly, hydroxychloroquine, an autophagy inhibitor, was found to significantly prevent GUTK-induced cell death in nutrient starvation conditions, suggesting that the cell death observed is largely dependent on autophagy. We further provide evidence that GUTK inhibits Akt phosphorylation, thereby inhibiting the mTOR pathway in cancer cells during nutrient starvation. In addition, GUTK causes the accumulation of reactive oxygen species (ROS) and the phosphorylation of JNK in EBSS, which may mediate both autophagy and apoptosis. CONCLUSION These data indicate that GUTK sensitizes cancer cells to nutrient stress-induced cell death though Akt/mTOR dependent autophagy pathway.


Angewandte Chemie | 2016

Crosslinked Aspartic Acids as Helix‐Nucleating Templates

Hui Zhao; Qisong Liu; Hao Geng; Yuan Tian; Min Cheng; Yanhong Jiang; Mingsheng Xie; Xiaogang Niu; Fan Jiang; Ya‐Ou Zhang; Yuanzhi Lao; Yun-Dong Wu; Naihan Xu; Zigang Li

Described is a facile helix-nucleating template based on a tethered aspartic acid at the N-terminus [terminal aspartic acid (TD)]. The nucleating effect of the template is subtly influenced by the substituent at the end of the side-chain-end tether as indicated by circular dichroism, nuclear magnetic resonance, and molecular dynamics simulations. Unlike most nucleating strategies, the N-terminal amine is preserved, thus enabling further modification. Peptidomimetic estrogen receptor modulators (PERMs) constructed using this strategy show improved therapeutic properties. The current strategy can be regarded as a good complement to existing helix-stabilizing methods.


Oncotarget | 2016

MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis

Min Cheng; Lei Liu; Yuanzhi Lao; Weijie Liao; Meijian Liao; Xuan Luo; Jiangbin Wu; Weidong Xie; Yaou Zhang; Naihan Xu

Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases.


BMC Cancer | 2015

The natural compound Guttiferone F sensitizes prostate cancer to starvation induced apoptosis via calcium and JNK elevation.

Xin Li; Yuanzhi Lao; Hong Zhang; Xiaoyu Wang; Hongsheng Tan; Zhi-Xiu Lin; Hongxi Xu

BackgroundIn a cytotoxicity screen in serum-free medium, Guttiferone F showed strong growth inhibitory effect against prostate cancer cells.MethodsProstate cancer cells LNCaP and PC3 were treated with Guttiferone F in serum depleted medium. Sub-G1 phase distributions were estimated with flow cytometry. Mitochondrial disruption was observed under confocal microscope using Mitotracker Red staining. Gene and protein expression changes were detected by real-time PCR and Western blotting. Ca2+ elevation was examined by Fluo-4 staining under fluorescence microscope. PC3 xenografts in mice were examined by immunohistochemical analysis.ResultsGuttiferone F had strong growth inhibitory effect against prostate cancer cell lines under serum starvation. It induced a significant increase in sub-G1 fraction and DNA fragmentation. In serum-free medium, Guttiferone F triggered mitochondria dependent apoptosis by regulating Bcl-2 family proteins. In addition, Guttiferone F attenuated the androgen receptor expression and phosphorylation of ERK1/2, while activating the phosphorylation of JNK and Ca2+ flux. Combination of caloric restriction with Guttiferone F in vivo could increase the antitumor effect without causing toxicity.ConclusionsGuttiferone F induced prostate cancer cell apoptosis under serum starvation via Ca2+ elevation and JNK activation. Combined with caloric restriction, Guttiferone F exerted significant growth inhibition of PC3 cells xenograft in vivo. Guttiferone F is therefore a potential anti-cancer compound.

Collaboration


Dive into the Yuanzhi Lao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Zhang

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar

Man Wu

Shanghai University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge