Yubin Zheng
Washington State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yubin Zheng.
Bioresource Technology | 2011
Xiaochen Yu; Yubin Zheng; Kathleen M. Dorgan; Shulin Chen
This paper explores the use of the hydrolysate from the dilute sulfuric acid pretreatment of wheat straw for microbial oil production. The resulting hydrolysate was composed of pentoses (24.3g/L) and hexoses (4.9 g/L), along with some other degradation products, such as acetic acid, furfural, and hydroxymethylfurfural (HMF). Five oleaginous yeast strains, Cryptococcus curvatus, Rhodotorula glutinis, Rhodosporidium toruloides, Lipomyces starkeyi, and Yarrowia lipolytica, were evaluated by using this hydrolysate as substrates. The results showed that all of these strains could use the detoxified hydrolysate to produce lipids while except R. toruloides non-detoxified hydrolysate could also be used for the growth of all of the selective yeast strains. C. curvatus showed the highest lipid concentrations in medium on both the detoxified (4.2g/L) and non-detoxified (5.8 g/L) hydrolysates. And the inhibitory effect studies on C. curvatus indicated HMF had insignificant impacts at a concentration of up to 3g/L while furfural inhibited cell growth and lipid content by 72.0% and 62.0% at 1g/L, respectively. Our work demonstrates that lipid production is a promising alternative to utilize hemicellulosic sugars obtained during pretreatment of lignocellulosic materials.
Applied Biochemistry and Biotechnology | 2011
Zhanyou Chi; Yubin Zheng; Anping Jiang; Shulin Chen
Food waste and municipal wastewater are promising feedstocks for microbial lipid biofuel production, and corresponding production process is to be developed. In this study, different oleaginous yeast strains were tested to grow in hydrolyzed food waste, and growths of Cryptococcus curvatus, Yarrowia lipolytica, and Rhodotorula glutinis in this condition were at same level as in glucose culture as control. These strains were further tested to grow in municipal primary wastewater. C. curvatus and R. glutinis had higher production than Y. lipolytica in media made from primary wastewater, both with and without glucose supplemented. Finally, a process was tested to grow C. curvatus and R. glutinis in media made from food waste and municipal wastewater, and the effluents from these processes were further treated with yeast culture and phototrophic algae culture; 1.1xa0g/L C. curvatus and 1.5xa0g/L R. glutinis biomass were further produced in second-step yeast cultures, as well as 1.53 and 0.58xa0g/L Chlorella sorokiniana biomass in phototrophic cultures. The residual nitrogen concentrations in final effluents were 33xa0mg/L and 34xa0mg/L, respectively, and the residual phosphorus concentrations were 1.5 and 0.6xa0mg/L, respectively. The lipid contents in the produced biomass were from 18.7% to 28.6%.
Bioresource Technology | 2012
Yubin Zheng; Zhanyou Chi; Ben Lucker; Shulin Chen
A two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production was studied, wherein high density heterotrophic cultures of Chlorellasorokiniana serve as seed for subsequent phototrophic growth. The data showed growth rate, cell density and productivity of heterotrophic C.sorokiniana were 3.0, 3.3 and 7.4 times higher than phototrophic counterpart, respectively. Hetero- and phototrophic algal seeds had similar biomass/lipid production and fatty acid profile when inoculated into phototrophic culture system. To expand the application, food waste and wastewater were tested as feedstock for heterotrophic growth, and supported cell growth successfully. These results demonstrated the advantages of using heterotrophic algae cells as seeds for open algae culture system. Additionally, high inoculation rate of heterotrophic algal seed can be utilized as an effective method for contamination control. This two-stage heterotrophic phototrophic process is promising to provide a more efficient way for large scale production of algal biomass and biofuels.
Bioresource Technology | 2013
Tao Dong; Jun Wang; Chao Miao; Yubin Zheng; Shulin Chen
The yield of fatty acid methyl ester (FAME) from microalgae biomass is generally low via traditional extraction-conversion route due to the deficient solvent extraction. In this study a two-step in situ process was investigated to obtain a high FAME yield from microalgae biomass that had high free fatty acids (FFA) content. This was accomplished with a pre-esterification process using heterogeneous catalyst to reduce FFA content prior to the base-catalyzed transesterification. The two-step in situ process resulted in a total FAME recovery up to 94.87±0.86%, which was much higher than that obtained by a one-step acid or base catalytic in situ process. The heterogeneous catalyst, Amberlyst-15, could be used for 8 cycles without significant loss in activity. This process have the potential to reduce the production cost of microalgae-derived FAME and be more environmental compatible due to the higher FAME yield with reduced catalyst consumption.
Biotechnology for Biofuels | 2012
Yubin Zheng; Xiaochen Yu; Jijiao Zeng; Shulin Chen
BackgroundLipids produced from filamentous fungi show great promise for biofuel production, but a major limiting factor is the high production cost attributed to feedstock. Lignocellulosic biomass is a suitable feedstock for biofuel production due to its abundance and low value. However, very limited study has been performed on lipid production by culturing oleaginous fungi with lignocellulosic materials. Thus, identification of filamentous fungal strains capable of utilizing lignocellulosic hydrolysates for lipid accumulation is critical to improve the process and reduce the production cost.ResultsThe growth performances of eleven filamentous fungi were investigated when cultured on glucose and xylose. Their dry cell weights, lipid contents and fatty acid profiles were determined. Six fungal strains with high lipid contents were selected to culture with the hydrolysate from dilute sulfuric acid pretreatment of wheat straw. The results showed that all the selected fungal strains were able to grow on both detoxified liquid hydrolysate (DLH) and non-detoxified liquid hydrolysate (NDLH). The highest lipid content of 39.4% was obtained by Mortierella isabellina on NDLH. In addition, NDLH with some precipitate could help M. isabellina form pellets with an average diameter of 0.11u2009mm.ConclusionThis study demonstrated the possibility of fungal lipid production from lignocellulosic biomass. M. isabellina was the best lipid producer grown on lignocellulosic hydrolysates among the tested filamentous fungi, because it could not only accumulate oils with a high content by directly utilizing NDLH to simplify the fermentation process, but also form proper pellets to benefit the downstream harvesting. Considering the yield and cost, fungal lipids from lignocellulosic biomass are promising alternative sources for biodiesel production.
Bioresource Technology | 2013
Tingting Li; Yubin Zheng; Liang Yu; Shulin Chen
To augment biomass and lipid productivities of heterotrophic cultured microalgae Chlorella sorokiniana, the influence of environmental temperature and medium factors, such as carbon source, nitrogen source, and their initial concentrations was investigated in this study. The microalga C. sorokiniana could tolerate up to 42°C and showed the highest growth rate of 1.60d(-1) at 37°C. The maximum dry cell weight (DCW) and corresponding lipid concentration was obtained with 80gL(-1) of initial glucose and 4gL(-1) of initial KNO3 at 37°C. In 5-L batch fermentation, the DCW increased dramatically from 0.9gL(-1) to 37.6gL(-1) in the first 72h cultivation, with the DCW productivity of 12.2gL(-1)d(-1). The maximum lipid content of 31.5% was achieved in 96h and the lipid productivity was 2.9gL(-1)d(-1). The results showed C. sorokiniana could be a promising strain for biofuel production.
Bioresource Technology | 2013
Jijiao Zeng; Yubin Zheng; Xiaochen Yu; Liang Yu; Difeng Gao; Shulin Chen
Various carbon sources including monosugars, disaccharides and carboxymethyl-cellulose (CMC) were used for single-cell oil production by the filamentous fungus Mortierella isabellina. In addition, the inhibitory effects of lignocellulose-derived compounds (lignin aldehydes, furan aldehydes and weak acid) were investigated. C6 sugars were preferably used for growth compared to C5 sugars. CMC was not an usable substrate, implying the absence of a cellulase system in this fungus. Lignin derivatives showed the most inhibitory effects, but acetic and formic acids at concentrations of 4 g/L improved lipid production, achieving 6.81 ± 0.07 g/L and 6.66 ± 0.33 g/L respectively, which was twice as high as that of the control. A 16.8% lipid yield from hydrolysate suggested that this fungus could be useful for microbial lipid production.
Bioresource Technology | 2013
Difeng Gao; Jijiao Zeng; Yubin Zheng; Xiaochen Yu; Shulin Chen
Culture conditions including nitrogen source and concentration, xylose concentration, and inoculum level were evaluated for the effect on cell growth and lipid production of an oleaginous fungus, Mortierella isabellina, grown on xylose. Yeast extract and ammonium sulfate were found to be the best amongst the organic and inorganic nitrogen sources tested, respectively. Subsequent combination of these two nitrogen sources at a nitrogen ratio of 1:1 further enhanced lipid production. The highest cell biomass 28.8 g L(-1) and lipid 18.5 g L(-1) were obtained on a medium containing 100 g L(-1) xylose and 50.4 mM nitrogen with a spore concentration of 10(8) mL(-1). Specifically, nitrogen concentration and inoculum level were demonstrated to be important for obtaining a high lipid yield on xylose consumed of 0.182 g g(-1). The results suggest that M. isabellina holds great potential to be a candidate for biofuel production from xylose, the second most abundant sugar from lignocellulose.
Bioresource Technology | 2013
Zhanyou Chi; Yuxiao Xie; Farah C. Elloy; Yubin Zheng; Yucai Hu; Shulin Chen
An extremely alkalihalophilic cyanobacteria Euhalothece ZM001 was tested in the Bicarbonate-based Integrated Carbon Capture and Algae Production System (BICCAPS), which utilize bicarbonate as carbon source for algae culture and use the regenerated carbonate to absorb CO2. Culture conditions including temperature, inoculation rate, medium composition, pH, and light intensity were investigated. A final biomass concentration of 4.79 g/L was reached in tissue flask culture with 1.0 M NaHCO3/Na2CO3. The biomass productivity of 1.21 g/L/day was achieved under optimal conditions. When pH increased from 9.55 to 10.51, 0.256 M of inorganic carbon was consumed during the culture process. This indicated sufficient carbon can be supplied as bicarbonate to the culture. This study proved that a high biomass production rate can be achieved in a BICCAPS. This strategy can also lead to new design of photobioreactors that provides an alternative supply of CO2 to sparging.
Biotechnology for Biofuels | 2014
Yubin Zheng; Xiaochen Yu; Tingting Li; Xiaochao Xiong; Shulin Chen
BackgroundThe heterotrophic and mixotrophic culture of oleaginous microalgae is a promising process to produce biofuel feedstock due to the advantage of fast growth. Various organic carbons have been explored for this application. However, despite being one of the most abundant and economical sugar resources in nature, D-xylose has never been demonstrated as a carbon source for wild-type microalgae. The purpose of the present work was to identify the feasibility of D-xylose utilization by the oleaginous microalga Chlorella sorokiniana.ResultsThe sugar uptake kinetic analysis was performed with 14C-labeled sugars and the data showed that the D-glucose induced algal cells (the alga was heterotrophically grown on D-glucose and then harvested as D-glucose induced cells) exhibited a remarkably increased D-xylose uptake rate. The maximum D-xylose transport rate was 3.8 nmol min-1 mg-1 dry cell weight (DCW) with Km value of 6.8 mM. D-xylose uptake was suppressed in the presence of D-glucose, D-galactose and D-fructose but not L-arabinose and D-ribose. The uptake of D-xylose activated the related metabolic pathway, and the activities of a NAD(P)H-linked xylose reductase (XR) and a unique NADP+-linked xylitol dehydrogenase (XDH) were detected in C. sorokiniana. Compared with the culture in the dark, the consumption of D-xylose increased 2 fold under light but decreased to the same level with addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), indicating that extra chemical energy from the light-dependent reaction contributed the catabolism of D-xylose for C. sorokiniana.ConclusionsAn inducible D-xylose transportation system and a related metabolic pathway were discovered for microalga for the first time. The transportation of D-xylose across the cell membrane of C. sorokiniana could be realized by an inducible hexose symporter. The uptake of D-xylose subsequently activated the expression of key catalytic enzymes that enabled D-xylose entering central metabolism. Results of this research are useful to better understand the D-xylose metabolic pathway in the microalga C. sorokiniana and provide a target for genetic engineering to improve D-xylose utilization for microalgal lipid production.