Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yubyeol Jeon is active.

Publication


Featured researches published by Yubyeol Jeon.


Theriogenology | 2012

The effects of resveratrol on porcine oocyte in vitro maturation and subsequent embryonic development after parthenogenetic activation and in vitro fertilization

Seong-Sung Kwak; Seung-A Cheong; Yubyeol Jeon; Eunsong Lee; Kyung-Chul Choi; Eui-Bae Jeung; Sang-Hwan Hyun

We investigated the effects of resveratrol, a phytoalexin with various pharmacologic activities, on in vitro maturation (IVM) of porcine oocytes. We investigated intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, as well as gene expression in mature oocytes, cumulus cells, and in vitro fertilization (IVF)-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 44 h of IVM, no significant difference was observed in maturation of the 0.1, 0.5, and 2.0 μM resveratrol groups (83.0%, 84.1%, and 88.3%, respectively) compared with the control (84.1%), but the 10.0 μM resveratrol group showed significantly decreased nuclear maturation (75.0%) (P < 0.05). The 0.5- and 2.0-μm groups showed a significant (P < 0.05) increase in intracellular GSH levels compared with the control and 10.0 μM group. Intracellular ROS levels in oocytes matured with 2.0 μM resveratrol decreased significantly (P < 0.05) compared with those in the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rates and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) than the control group. Cumulus-oocytes complex treated with 2.0 μM resveratrol showed lower expression of apoptosis-related genes compared with mature oocytes and cumulus cells. Cumulus cells treated with 2.0 μM resveratrol showed higher (P < 0.05) expression of proliferating cell nuclear antigen than the control group. IVF-derived blastocysts derived from 2.0 μM resveratrol-treated oocytes also had less (P < 0.05) Bak expression than control IVF-derived blastocysts. In conclusion, 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating gene expression during oocyte maturation.


Theriogenology | 2012

Effects of porcine granulocyte-macrophage colony-stimulating factor on porcine in vitro-fertilized embryos

Seong-Sung Kwak; S.H. Jeung; Dibyendu Biswas; Yubyeol Jeon; Sang-Hwan Hyun

This study investigated the effects of porcine granulocyte-macrophage colony-stimulating factor (pGM-CSF) on the developmental potential of porcine in vitro-fertilized (IVF) embryos in chemically and semidefined (with BSA) medium. In experiment 1, zygotes were treated with different concentrations of pGM-CSF (0, 2, 10, 100 ng/mL). The results indicated that 10 ng/mL pGM-CSF significantly (P < 0.05) increased blastocyst development and total cell number (15.1% and 53.5, respectively) compared with the control (6.1%, and 38.8, respectively). Comparing blastocyst formation, early and expanded blastocyst formation was significantly higher in the 10 ng/mL-pGM-CSF group than in the control on Days 6 and 7 of the culture period. However, there was no significant difference in cleavage rate. Experiment 2 demonstrated that pGM-CSF influenced the percentage of blastocyst formation and total cell number when pGM-CSF was added during Days 4 to 7 (14.6% and 53.9, respectively) or Days 0 to 7 (15.2% and 54.0, respectively) compared with the control (7.8% and 43.1, respectively) and compared with Days 0 to 3 (8.7% and 42.5, respectively). Similarly, early blastocyst formation rates were significantly higher at Days 4 to 7 than in the control, and expanded blastocyst formation was significantly higher at Days 4 to 7 or Days 0 to 7. No significant difference in cleavage rates appeared among the groups. In experiment 3, in the presence of BSA, pGM-CSF also increased the percentage of embryos that developed to the blastocyst stage and the total cell number (20.3% and 59.8, respectively) compared with the control (14.9% and 51.4, respectively), whereas there was no significant difference in cleavage rate. Experiment 4 found that the total cell number and the number of cells in the inner cell mass (ICM) were significantly increased compared with the control when zygotes were cultured in either porcine zygotic medium (PZM)-3 or PZM-4 supplemented with 10 ng/mL pGM-CSF. The number of trophectoderm (TE) cells was significantly higher in PZM-3 medium supplemented with pGM-CSF than in the control, and the number tended to increase (P = 0.058) in PZM-4 medium supplemented with pGM-CSF. The ratio of inner cell mass to trophectoderm cells was significantly higher in PZM-4 supplemented with 10 ng/mL pGM-CSF, but not in PZM-3. In experiment 5, it was found that the male pronuclear formation rate, monospermic penetration and sperm/oocyte were 95.4%, 37.2%, and 2.4, respectively. Together, these results suggest that pGM-CSF may have a physiological role in promoting the development of porcine preimplantation embryos and regulating cell viability and that addition of pGM-CSF to IVC medium at Days 4 to 7 or 0 to 7 improves the developmental potential of porcine IVF embryos.


Theriogenology | 2015

Effects of coculture with cumulus-derived somatic cells on in vitro maturation of porcine oocytes

Junchul David Yoon; Yubyeol Jeon; Lian Cai; Seon-Ung Hwang; Eunhye Kim; Eunsong Lee; Dae Y. Kim; Sang-Hwan Hyun

In the process of IVM, cumulus-oocyte complexes (COCs) separate from the follicular microenvironment, leading to the loss of endocrine interactions between follicular mural somatic cells and COCs. To restore the microenvironment, a coculture system was established using cumulus-derived somatic cells (CSCs) for IVM. The CSCs were cultured in Dulbeccos modified Eagles medium for 48 hours with varying numbers of CSCs (0.0, 2.5 × 10(4), 5.0 × 10(4), and 10.0 × 10(4)) and then cultured in tissue culture medium 199 (TCM 199) for 4 hours before adding the oocytes. Cumulus-oocyte complexes from 3- to 6-mm follicles were matured in 500 μL of TCM 199 with eCG and hCG for 22 hours and then cultured in TCM 199 without hormones for 22 hours. After IVM, the group with 2.5 × 10(4) CSCs showed a significant increase in intracellular glutathione levels compared with the control group. In the evaluation of sperm penetration, efficient fertilization was increased in the groups with 2.5 × 10(4) and 5.0 × 10(4) CSCs compared with controls (44.9 and 46.5 vs. 32.1, respectively). The mRNA expression pattern analysis in matured COCs showed a significant upregulation of PCNA, COX-2, Has2, Ptx3, and Nrf2 in the 2.5 × 10(4) CSC group compared with controls. During COC maturation at 0, 11, 22, 33, and 44 hours, the 2.5 × 10(4) and 5.0 × 10(4) CSC groups showed a significantly altered mRNA expression of BMP15 and GDF9. The developmental competence of the matured oocytes in all groups was evaluated after IVF and parthenogenetic activation (PA). After IVF, the 2.5 × 10(4) CSC group showed significantly higher cleavage, blastocyst formation rate, and total cell numbers compared with controls (60.0%, 35.7%, and 127.3 vs. 43.2%, 21.1%, and 89.3, respectively). After PA, the 2.5 × 10(4) CSC group had significantly higher blastocyst formation rate and total cell number than the control group (52.0% and 120.4 vs. 35.4% and 90.9, respectively). In conclusion, these results suggest that the presence of a population of 2.5 × 10(4) CSCs during IVM synergistically improved the developmental potential of IVF- and PA-derived porcine embryos by increasing the intracellular glutathione level via changing of a specific gene expression pattern during oocyte maturation.


PLOS ONE | 2014

Production of Pigs Expressing a Transgene under the Control of a Tetracycline-Inducible System

Yong-Xun Jin; Yubyeol Jeon; Sung-Hyun Lee; Mo-Sun Kwon; Teoan Kim; Xiang-Shun Cui; Sang-Hwan Hyun; Nam-Hyung Kim

Pigs are anatomically and physiologically closer to humans than other laboratory animals. Transgenic (TG) pigs are widely used as models of human diseases. The aim of this study was to produce pigs expressing a tetracycline (Tet)-inducible transgene. The Tet-on system was first tested in infected donor cells. Porcine fetal fibroblasts were infected with a universal doxycycline-inducible vector containing the target gene enhanced green fluorescent protein (eGFP). At 1 day after treatment with 1 µg/ml doxycycline, the fluorescence intensity of these cells was increased. Somatic cell nuclear transfer (SCNT) was then performed using these donor cells. The Tet-on system was then tested in the generated porcine SCNT-TG embryos. Of 4,951 porcine SCNT-TG embryos generated, 850 were cultured in the presence of 1 µg/ml doxycycline in vitro. All of these embryos expressed eGFP and 15 embryos developed to blastocyst stage. The remaining 4,101 embryos were transferred to thirty three surrogate pigs from which thirty eight cloned TG piglets were obtained. PCR analysis showed that the transgene was inserted into the genome of each of these piglets. Two TG fibroblast cell lines were established from these TG piglets, and these cells were used as donor cells for re-cloning. The re-cloned SCNT embryos expressed the eGFP transgene under the control of doxycycline. These data show that the expression of transgenes in cloned TG pigs can be regulated by the Tet-on/off systems.


Theriogenology | 2014

Supplementation of zinc on oocyte in vitro maturation improves preimplatation embryonic development in pigs

Yubyeol Jeon; Junchul David Yoon; Lian Cai; Seon-Ung Hwang; Eunhye Kim; Zhong Zheng; Eunsong Lee; Dae Young Kim; Sang-Hwan Hyun

We investigated the effects of zinc supplementation during the IVM of porcine oocytes. Nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, subsequent embryonic development, and gene expression were evaluated. Zinc concentrations in porcine plasma and follicular fluid were 0.82 and 0.84 μg/mL, respectively. Zinc was not detected in IVM medium. After treatment with various zinc concentrations (0.0, 0.4, 0.8, 1.2, and 1.6 μg/mL), no significant difference in IVM was observed among groups (85.7%, 88.7%, 90.4%, 90.3%, and 87.2%, respectively). The effects of different zinc concentrations on porcine oocyte intracellular GSH and ROS levels were examined in mature oocytes. Intracellular GSH levels were significantly higher in the 0.8-, 1.2-, and 1.6-μg/mL groups than in the control (P < 0.05). Intracellular ROS levels of oocytes matured with 0.8, 1.2, and 1.6 μg/mL were reduced significantly (P < 0.05) compared with the control and 0.4-μg/mL groups. The developmental competence of oocytes matured with different zinc concentrations was evaluated after parthenogenetic activation (PA) and in vitro fertilization (IVF). Oocytes treated with zinc during IVM showed no significant difference in cleavage rate after PA. Oocytes treated with 0.8 and 1.2 μg/mL zinc during IVM had significantly higher blastocyst formation rates after PA (41.5% and 41.1%, respectively) than the control (27.2%). IVF embryos showed similar results. The blastocyst formation rate was significantly higher (28.2%) in the 0.8-μg/mL group. TNFAIP2 and Bax were decreased in zinc-treated cumulus cells. Increased POU5F1 and decreased Bax transcript levels were observed in zinc-treated oocytes. POU5F1 and Bcl-2 transcript levels were significantly higher in zinc-treated IVF blastocysts. These results indicate that treatment with adequate zinc concentrations during IVM improved the developmental potential of porcine embryos by regulating the intracellular GSH concentration, the ROS level, and transcription factor expression.


Theriogenology | 2015

Antioxidative effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF

Eunhye Kim; Yubyeol Jeon; Dae Young Kim; Eunsong Lee; Sang-Hwan Hyun

Carboxyethylgermanium sesquioxide (Ge-132) is an organogermanium compound known to exert biological activities, such as antioxidant and anticancer effects. In this study, we investigated the effect of Ge-132 on the IVM of porcine oocytes via analysis of nuclear maturation, intracellular glutathione (GSH) and reactive oxygen species (ROS) levels, and subsequent embryonic development after parthenogenetic activation (PA) and IVF. After 40 hours of IVM, no significant difference in nuclear maturation was observed in the 100, 200, and 400 μg/mL of Ge-132 treatment groups (89.9%, 91.3%, and 90.4%, respectively) compared with the control group (89.0%). However, intracellular GSH levels in oocytes treated with 200 μg/mL of Ge-132 increased significantly (P < 0.05), and the 200 and 400 μg/mL of Ge-132 treatment groups exhibited a significant (P < 0.05) decrease in intracellular ROS levels compared with the control group. Oocytes matured with 200 and 400 μg/mL of Ge-132 during IVM displayed significantly higher cleavage rates (78.7% and 82.7% vs. 67.5%, respectively), and the 200 μg/mL of Ge-132 treatment group displayed higher blastocyst formation rates and greater total cell numbers after PA (59.5% and 67.8 vs. 38.2% and 55.3, respectively) than the control group. Furthermore, oocytes matured with 200 μg/mL of Ge-132 during IVM failed to display significantly higher blastocyst formation rates (31.6% vs. 36.7%) but exhibited greater total cell numbers after IVF (71.5 vs. 101.3, respectively) than the control group. We also found that the Ge-132-treated oocytes showed significantly higher messenger RNA (mRNA) expression levels of the oxidative-related gene Nrf-2 and lower mRNA expression levels of the proapoptotic gene Bax than the control group (P < 0.05). In conclusion, our results suggest that treatment with Ge-132 during IVM improves the developmental potential of PA and IVF porcine embryos by increasing the intracellular GSH levels, thereby decreasing the intracellular ROS levels and reducing oxidative stress-induced apoptosis, thereby regulating the mRNA expression of oocytes during oocyte maturation.


Theriogenology | 2012

Expression patterns of sirtuin genes in porcine preimplantation embryos and effects of sirtuin inhibitors on in vitro embryonic development after parthenogenetic activation and in vitro fertilization

Seong-Sung Kwak; Seung-A Cheong; Junchul David Yoon; Yubyeol Jeon; Sang-Hwan Hyun

We examined the expression patterns of porcine sirtuin 1 to 3 (Sirt1-3) genes in preimplantation embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). We also investigated the effects of sirtuin inhibitors (5 mM nicotinamide [NAM] and 100 μM sirtinol) on embryonic development of PA and IVF embryos under in vitro culture (IVC). The expression patterns of Sirt1-3 mRNA in preimplantation embryos of PA, IVF, and SCNT were significantly (P < 0.05) decreased from metaphase stage of oocyte to blastocyst stage. Especially, the expressions of Sirt1-3 in SCNT blastocysts were significantly (P < 0.05) lower and Sirt2 in PA blastocyst was significantly higher compared with the IVF blastocysts. Treatment with sirtuin inhibitors during IVC resulted in significantly (P < 0.05) decreased blastocyst formation and total cell number of blastocyst derived from PA (NAM: 29.4% and 29.6, sirtinol: 31.0% and 30.3, and control: 40.9% and 41.7, respectively) and IVF embryos (NAM: 10.4% and 30.9, sirtinol: 6.3% and 30.5, and control: 16.7% and 42.8, respectively). There was no significant difference in cleavage rate in both PA and IVF embryos. The early and expanded blastocyst formations at Day 7 were significantly lower in the sirtuin inhibitors-treated groups than the control. It was demonstrated that sirtuin inhibitor (NAM) influenced the percentage of blastocyst formation and total cell number of PA derived blastocyst when NAM was added during day 4 to 7 (22.1% and 32.4) or day 0 to 7 (23.1% and 31.6) of IVC compared with the control (41.8% and 41.5). No significant difference in cleavage rates appeared among the groups. The blastocysts derived from PA embryos treated with sirtuin inhibitors showed lower (P < 0.05) expressions of POU5F1 and Cdx2 genes. Also, Sirt2 mRNA expression was significantly decreased in sirtinol treated group and Sirt3 mRNA expression was also significantly decreased in both NAM and sirtinol treated groups compared with the control. In conclusion, these results suggest that sirtuins may have a physiological and important role in embryonic development of porcine preimplantation embryos by regulating essential gene expressions of developing embryos. These findings could have implications for understanding the role of sirtuins during embryo development and for improving SCNT and related techniques.


Theriogenology | 2011

Cleavage pattern and survivin expression in porcine embryos by somatic cell nuclear transfer

Yubyeol Jeon; Se Heon Jeong; Dibyendu Biswas; Eui Man Jung; Eui Bae Jeung; Eun Song Lee; Sang-Hwan Hyun

Mammalian embryos produced in vitro show a high rate of early developmental failure. Numerous somatic cell nuclear transfer (SCNT) embryos undergo arrest and show abnormal gene expression in the early developmental stages. The purpose of this study was to analyze porcine SCNT embryo development and investigate the cause of porcine SCNT embryo arrest. The temporal cleavage pattern of porcine SCNT embryos was analyzed first, and the blastocyst origin at early developmental stage was identified. To investigate markers of arrest in the cleavage patterns of preimplantation SCNT embryos, the expression of survivin-the smallest member of the inhibitor of apoptosis (IAP) gene family, which suppresses apoptosis and regulates cell division-was compared between embryos showing normal cleavage and arrested embryos. A total of 511 SCNT embryos were used for cleavage pattern analysis. Twenty-four hours post activation (hpa), embryos were classified into five groups based on the cleavage stage as follows; 1-cell, 2-cell, 4-cell, 8-cell and fragmentation (frag). In addition, 48 hpa embryos were more strictly classified into 15 groups based on the cleavage stage of 24 hpa; 1-1 cell (24 hpa-48 hpa), 1-2 cell, 1-4 cell, 1-8 cell, 1 cell-frag, 2-2 cell, 2-4 cell, 2-8 cell, 2 cell-frag, 4-4 cell, 4-8 cell, 4 cell-frag, 8-8 cell, 8 cell-frag, and frag-frag. These groups were cultured until 7 d post activation, and were evaluated for blastocyst formation. At 24 hpa, the proportion of 2-cell stage was significantly higher (44.5%) than those in the other cleavage stages (1-cell: 13.4%; 4-cell: 17.9%; 8-cell: 10.3%; and frag: 13.9%). At 48 hpa, the proportion of embryos in the 2-4 cell stage was significantly higher (32.4%) than those in the other cleavage stages (2-8 cell: 8.2%; 4-8 cell: 12.1%; and frag-frag: 13.9%). Some embryos arrested at 48 hpa (1-1 cell: 5.8%; 2-2 cell: 2.8%; 4-4 cell: 3.8%; 8-8 cell: 6.5%; and total arrested embryos: 18.9%). Blastocyst formation rates were higher in 2-4 cell cleavage group (20.2%) than in other groups. SCNT embryos in 2-4 cell stage showed stable developmental competence. In addition, we investigated survivin expression in porcine SCNT embryos during the early developmental stages. The levels of survivin mRNA in 2-cell, 4-cell stage SCNT embryos were significantly higher than those of arrested embryos. Survivin protein expression showed a similar pattern to that of survivin mRNA. Normally cleaving embryos showed higher survivin protein expression levels than arrested embryos. These observations suggested that 2-4 cell cleaving embryos at 48 hpa have high developmental competence, and that embryonic arrest, which may be influenced by survivin expression in porcine SCNT embryos.


Theriogenology | 2014

The new system of shorter porcine oocyte in vitro maturation (18 hours) using ≥8 mm follicles derived from cumulus-oocyte complexes

Seong-Sung Kwak; Junchul David Yoon; Seung-A Cheong; Yubyeol Jeon; Eunsong Lee; Sang-Hwan Hyun

Despite recent efforts to improve in vitro maturation (IVM) systems for porcine oocytes, developmental competence of in vitro-matured oocytes is still suboptimal compared with those matured in vivo. In this study, we compared oocytes obtained from large (≥8 mm; LF) and medium (3-7 mm; MF) sized follicles in terms of nuclear maturation, intracellular glutathione and reactive oxygen species levels, gene expression, and embryo developmental competence after IVM. In the control group, cumulus-oocyte complexes (COCs) were aspirated from MF and matured for 22 hours with hormones and subsequently matured for 18 to 20 hours without hormones at 39 °C, 5% CO2 in vitro. In the LF group, COCs were obtained from follicles larger than 8 mm and were subjected to IVM for only 18 hours. The ovaries have LF were averagely obtained with 1.7% per day during 2012 and it was significantly higher in the winter season. The results of the nuclear stage assessment of the COCs from the LFs are as follows: before IVM (0 hours); germinal vesicle stage (15.2%), metaphase I (MI) stage (55.4%), anaphase and telophase I stages (15.8%), and metaphase II (MII) stage (13.6%). After 6 hours IVM; germinal vesicle (4.2%), MI (43.6%), anaphase and telophase I (9.4%), and MII (42.8%). After 18-hour IVM; MI (9.7%) and MII (90.3%). Oocytes from LF showed a significant (P < 0.001) increase in intracellular glutathione (1.41 vs. 1.00) and decrease in reactive oxygen species (0.8 vs. 1.0) levels compared with the control. The cumulus cells derived from LFs showed lower (P < 0.1) mRNA expression of COX-2 and TNFAIP6, and higher (P < 0.1) mRNA expression of PCNA and Nrf2 compared with the control group-derived cumulus cells. After parthenogenetic activation, in vitro fertilization and somatic cell nuclear transfer (SCNT) using matured oocytes from LFs, the embryo development was significantly improved (greater blastocyst formation rates and total cell numbers in blastocysts) compared with the control group. In conclusion, oocytes from LFs require only 18 hours to complete oocyte maturation in vitro and their developmental competence is significantly greater than those obtained from MFs. Although their numbers are limited, oocytes from LFs might offer an alternative source for the efficient production of transgenic pigs using SCNT.


Theriogenology | 2015

The effects of human recombinant granulocyte-colony stimulating factor treatment during in vitro maturation of porcine oocyte on subsequent embryonic development

Lian Cai; Yubyeol Jeon; Junchul David Yoon; Seon Ung Hwang; Eunhye Kim; Kyu Mi Park; Kyu Jun Kim; Ming Hui Jin; Eunsong Lee; Hyunggee Kim; Eui Bae Jeung; Sang-Hwan Hyun

Granulocyte colony-stimulating factor (G-CSF) is required for proliferation, differentiation, and survival of cells. It is also a biomarker of human oocyte developmental competence for embryo implantation. In humans, the G-CSF concentration peaks during the ovulatory phase of the ovarian cycle. In this study, the expressions of G-CSF and its receptor were analyzed by polymerase chain reaction in granulosa cells (GCs), CL, cumulus cells (CCs), and oocytes. Cumulus-oocyte complexes were aspirated from antral follicles of 1 to 3 mm (small follicles) and 4 to 6 mm (medium follicles). Cumulus-oocyte complexes from two kinds of follicles were matured in protein-free maturation medium supplemented with various concentrations of G-CSF (0, 10, and 100 ng/mL). By real-time polymerase chain reaction, the expressions of G-CSF and its receptor were detected in GCs, CL, CCs, and oocytes. Interestingly, the G-CSF transcript levels were significantly lower in oocytes than in the other cell types, whereas the G-CSF receptor transcript levels in oocytes were similar to those in GCs. After 44 hours of IVM, no differences in the rate of nuclear maturation were detected; however, the intracellular reactive oxygen species levels in oocytes from both groups of follicles matured with 10 ng/mL of human recombinant G-CSF (hrG-CSF) groups were significantly lower (P < 0.05). After parthenogenetic activation, the cleavage rates were significantly (P < 0.05) higher in 100 ng/mL hrG-CSF-treated small (63.3%) follicles than in 0, 10 ng/mL hrG-CSF-treated small (38.6% and 49.0%, respectively) follicles and 0 ng/mL hrG-CSF-treated medium (52.1%) follicles, and the cleavage rates were significantly (P < 0.05) higher in 10 ng/mL hrG-CSF-treated medium (76.3%) follicles than in all other groups. The blastocyst formation rates were significantly (P < 0.05) higher in 100 ng/mL hrG-CSF-treated small (31.2%) follicles than in 0 and 10 ng/mL hrG-CSF small (10.4% and 15.6%, respectively) follicles, and the 10 ng/mL hrG-CSF medium (45.7%) follicle was significantly (P < 0.05) higher than in all other groups. The total cell number in blastocysts from the 10 ng/mL hrG-CSF medium (106.5) follicles was significantly (P < 0.05) increased compared to 0, 10, 100 ng/mL hrG-CSF small (55.0, 73.7 and 59.5, respectively) follicles and 0, 100 ng/mL hrG-CSF-treated medium (82.5 and 93.5, respectively) follicles. After IVF, the blastocysts stage was significantly (P < 0.05) increased in 10 ng/mL hrG-CSF-treated medium (36.4%) follicles. Fertilization efficiency was significantly high in 100 ng/mL of small (29.1%) and 10 ng/mL of medium (44.0%) follicles. We also examined the Bcl2 and ERK2 transcript levels and found that they were significantly higher in the small and medium follicle treatment groups. In conclusion, these results indicate that hrG-CSF improve the viability of porcine embryos.

Collaboration


Dive into the Yubyeol Jeon's collaboration.

Top Co-Authors

Avatar

Sang-Hwan Hyun

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Junchul David Yoon

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eunhye Kim

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Seong-Sung Kwak

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eunsong Lee

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar

Seung-A Cheong

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Lian Cai

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Seon-Ung Hwang

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Eui-Bae Jeung

Chungbuk National University

View shared research outputs
Top Co-Authors

Avatar

Dibyendu Biswas

Chungbuk National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge