Yucheng Feng
Auburn University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yucheng Feng.
Applied and Environmental Microbiology | 2003
Jeong Hun Park; Yucheng Feng; Pingsheng Ji; Thomas C. Voice; Stephen A. Boyd
ABSTRACT Bioavailability of pesticides sorbed to soils is an important determinant of their environmental fate and impact. Mineralization of sorbed atrazine was studied in soil and clay slurries, and a desorption-biodegradation-mineralization (DBM) model was developed to quantitatively evaluate the bioavailability of sorbed atrazine. Three atrazine-degrading bacteria that utilized atrazine as a sole N source (Pseudomonas sp. strain ADP, Agrobacterium radiobacter strain J14a, and Ralstonia sp. strain M91-3) were used in the bioavailability assays. Assays involved establishing sorption equilibrium in sterile soil slurries, inoculating the system with organisms, and measuring the CO2 production over time. Sorption and desorption isotherm analyses were performed to evaluate distribution coefficients and desorption parameters, which consisted of three desorption site fractions and desorption rate coefficients. Atrazine sorption isotherms were linear for mineral and organic soils but displayed some nonlinearity for K-saturated montmorillonite. The desorption profiles were well described by the three-site desorption model. In many instances, the mineralization of atrazine was accurately predicted by the DBM model, which accounts for the extents and rates of sorption/desorption processes and assumes biodegradation of liquid-phase, but not sorbed, atrazine. However, for the Houghton muck soil, which manifested the highest sorbed atrazine concentrations, enhanced mineralization rates, i.e., greater than those expected on the basis of aqueous-phase atrazine concentration, were observed. Even the assumption of instantaneous desorption could not account for the elevated rates. A plausible explanation for enhanced bioavailability is that bacteria access the localized regions where atrazine is sorbed and that the concentrations found support higher mineralization rates than predicted on the basis of aqueous-phase concentrations. Characteristics of high sorbed-phase concentration, chemotaxis, and attachment of cells to soil particles seem to contribute to the bioavailability of soil-sorbed atrazine.
Applied and Environmental Soil Science | 2012
Reji P. Mathew; Yucheng Feng; Leonard Githinji; Ramble O. Ankumah; Kipling S. Balkcom
Soil management practices influence soil physical and chemical characteristics and bring about changes in the soil microbial community structure and function. In this study, the effects of long-term conventional and no-tillage practices on microbial community structure, enzyme activities, and selected physicochemical properties were determined in a continuous corn system on a Decatur silt loam soil. The long-term no-tillage treatment resulted in higher soil carbon and nitrogen contents, viable microbial biomass, and phosphatase activities at the 0–5 cm depth than the conventional tillage treatment. Soil microbial community structure assessed using phospholipid fatty acid (PLFA) analysis and automated ribosomal intergenic spacer analysis (ARISA) varied by tillage practice and soil depth. The abundance of PLFAs indicative of fungi, bacteria, arbuscular mycorrhizal fungi, and actinobacteria was consistently higher in the no-till surface soil. Results of principal components analysis based on soil physicochemical and enzyme variables were in agreement with those based on PLFA and ARISA profiles. Soil organic carbon was positively correlated with most of the PLFA biomarkers. These results indicate that tillage practice and soil depth were two important factors affecting soil microbial community structure and activity, and conservation tillage practices improve both physicochemical and microbiological properties of soil.
Journal of Environmental Quality | 2008
Sanders Sm; Puneet Srivastava; Yucheng Feng; Dane Jh; Basile J; Mark O. Barnett
Currently, limited research on the fate of antimicrobials in the environment exists, once they are discharged in human and animal wastes. Sorption of two antimicrobials, sulfadimethoxine (SDM) and ormetoprim (OMP), was investigated in two soils and sand using a series of batch experiments. Because OMP and SDM are often administered in combination, their sorption was also investigated in combination as co-solutes. The rate of SDM and OMP sorption was rapid over the first few hours of the experiments, which then slowed considerably after 16 to 68 h. OMP sorption was enhanced at high concentrations when in combination with SDM, with linear sorption coefficients ranging from 1.3 to 58.3 L.kg(-1) in the single solute experiments and 4.96 to 89.7 L.kg(-1) in the co-solute experiments. Sorption of OMP as a single solute seems to provide a better fit with the Freundlich equation, which became more linear (n approached 1) when SDM was present. Overall, SDM sorbed less than OMP in the two soils and sand. SDM linear sorption coefficients ranged from 0.4 to 25.8 L.kg(-1) as a single solute and 2.5 to 22.1 L.kg(-1) as a co-solute. Sorption of SDM becomes more nonlinear (n < 1) when SDM is present in combination with OMP. Overall, sorption of both antimicrobials increased in the selected soils and sand as the organic matter, clay content, and cation exchange capacity increased. These experiments indicate relatively low sorption of SDM and OMP in natural soils, making them a potential threat to surface and ground water.
Applied Microbiology and Biotechnology | 1997
Yucheng Feng; K. D. Racke; Jean-Marc Bollag
Abstract Pseudomonas sp. strain M285 immobilized on diatomaceous earth beads was used to remove 3,5,6-trichloro-2-pyridinol (TCP) from industrial wastewater. Batch studies showed that immobilized Pseudomonas sp. strain M285 mineralized [2,6-14C]TCP rapidly; about 75% of the initial radioactivity was recovered as 14CO2. Transformation of TCP was inhibited by high concentrations of salt, and addition of osmoprotectants (proline and betaine at 1 mM) did not reduce the adverse effect of salt. TCP-containing wastewater (60–140 mg/l) was passed through columns containing immobilized Pseudomonas sp. strain M285 at increasing flow rates and increasing TCP concentrations; TCP removal of 80%–100% was achieved. Addition of nutrients, such as glucose and yeast extract, retarded TCP degradation. Growing cell cultures were found to be better inocula for immobilization than resting cells.
Water Research | 2015
Bing Han; Man Zhang; Dongye Zhao; Yucheng Feng
Manganese oxide (MnO₂) was reported to be effective for degrading aqueous pharmaceutical chemicals. However, little is known about its potential use for degrading soil-sorbed contaminants. To bridge this knowledge gap, we synthesized, for the first time, a class of stabilized MnO₂ nanoparticles using carboxymethyl celluloses (CMC) as a stabilizer, and tested their effectiveness for degrading aqueous and soil-sorbed estradiol. The most desired particles (highest reactivity and soil deliverability) were obtained at a CMC/MnO₂ molar ratio of 1.39 × 10(-3), which yielded a mean hydrodynamic size of 39.5 nm and a narrow size distribution (SD = 0.8 nm). While non-stabilized MnO₂ particles rapidly aggregated and were not transportable through a soil column, CMC-stabilized nanoparticles remained fully dispersed in water and were soil deliverable. At typical aquatic pH (6-7), CMC-stabilized MnO₂ exhibited faster degradation kinetics for oxidation of 17β-estradiol than non-stabilized MnO₂. The reactivity advantage becomes more evident when used for treating soil-sorbed estradiol owing to the ability of CMC to complex with metal ions and prevent the reactive sites from binding with inhibitive soil components. A retarded first-order rate model was able to interpret the oxidation kinetics for CMC-stabilized MnO₂. When used for degrading soil-sorbed estradiol, several factors may inhibit the oxidation effectiveness, including desorption rate, soil-MnO₂ interactions, and soil-released metals and reductants. CMC-stabilized MnO₂ nanoparticles hold the potential for facilitating in situ oxidative degradation of various emerging contaminants in soil and groundwater.
Environmental Pollution | 2009
Yuping Qiu; Hui Pang; Zunlong Zhou; Ping Zhang; Yucheng Feng; G. Daniel Sheng
The role of char nutrients in the biodegradation of coexisting dichlobenil and atrazine in a soil by their respective bacterial degraders, DDN and ADP, was evaluated. Under growing conditions, their degradation in soil extract was slow with <40% and <20% degraded within 64 h, respectively. The degradation in extracts and slurries of char-amended solids increased with increasing char content, due to nutritional stimulation on microbial activities. By supplementing soil extract with various major nutrients, the measured degradation demonstrated that P was the exclusive limiting nutrient. The reduction in the degradation of coexisting dichlobenil and atrazine resulted apparently from the competitive utilization of P by DDN and ADP. With a shorter lag phase, ADP commenced growing earlier than DDN with the advantage of utilizing P first in insufficient supply. This resulted in an inhibition on the growth of DDN and thus suppression on dichlobenil degradation.
Biodegradation | 1994
Yucheng Feng; Jean-Pierre Kaiser; Robert D. Minard; Jean-Marc Bollag
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.
Journal of Water and Health | 2009
R. Udenika Wijesinghe; Yucheng Feng; C. Wesley Wood; Donald M. Stoeckel; J. N. Shaw
Better understanding of Escherichia coli population dynamics and genetic variability in the secondary habitat is essential to improve fecal contamination monitoring and contamination pathway characterization. In this study, water samples were collected monthly over a one-year period at eight locations in the Catoma Creek watershed, a mixed land-use watershed in Central Alabama. E. coli concentrations varied from 17 to 12,650 CFU/100 ml and were well correlated with stream flow rates. Repetitive sequence-based PCR DNA fingerprinting was used to generate 271 unique DNA fingerprint patterns from 502 E. coli isolated from water samples. Cluster analysis showed an overall similarity of 32.8% across all DNA fingerprints. Multivariate analysis of variance (MANOVA) showed that E. coli genotypes had a tendency to cluster according to season and stream flow rather than sampling sites. MANOVA of a subset of data within a given season and flow rate, however, revealed some geographical differentiation between urban and rural sampling sites. The results indicate that genetic diversity of E. coli populations was not only high in the secondary habitat but also varied with season, flow conditions and, to a lesser extent, sampling location. To our knowledge, this is the first report relating E. coli genotype to stream flow.
Biology and Fertility of Soils | 2002
Yucheng Feng; Donald M. Stoeckel; Edzard Van Santen; Robert H. Walker
Abstract. The sensitivity of creeping bentgrass (Agrostis palustris Huds.) to the extreme heat found in the southeastern United States has led to the development of new greens-management methods. The purpose of this study was to examine the effects of subsurface aeration and growth regulator applications on soil microbial communities and mycorrhizal colonization rates in a creeping bentgrass putting green. Two cultivars (Crenshaw and Penncross), a growth regulator (trinexapac-ethyl), and subsurface aeration were evaluated in cool and warm seasons. Total bacterial counts were higher in whole (unsieved) soils than in sieved soils, indicating a richer rhizosphere soil environment. Mycorrhizal infection rates were higher in trinexapac-ethyl (TE) treated plants. High levels of hyphal colonization and relatively low arbuscule and vesicle occurrence were observed. Principal components analysis of whole-soil fatty acid methyl ester (FAME) profiles indicated that warm-season microbial populations in whole and sieved soils had similar constituents, but the populations differed in the cool season. FAME profiles did not indicate that subsurface aeration and TE application affected soil microbial community structure. This is the first reported study investigating the influences of subsurface aeration and TE application on soil microorganisms in a turfgrass putting green soil.
Soil Health and Intensification of Agroecosytems | 2017
Yucheng Feng; Kipling S. Balkcom
Abstract Recent interest in management of the soil biological component to improve soil health requires a better understanding on how management practices (e.g., tillage) and environmental conditions influence soil organisms. Intensive tillage often results in reduced organic matter content in the surface soil. Together with lack of ground cover, this leads to reduced infiltration and moisture retention. Tillage also accelerates crop residue decomposition by stimulating microbial activities. Therefore, mineralization rates in intensive tillage systems may exceed crop nutrient uptake rates at times. Tillage-induced microbial habitat changes typically depend on soil type, cropping systems, and climatic conditions, as well as time since the last tillage operation. Thus, effects on soil organisms are not always consistent. Nevertheless, physical disturbance of soil by tillage can have profound effects on soil biota, most of which have negative consequences leading to loss of biodiversity and ultimately, loss of ecosystem services.