Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yucheng Sun is active.

Publication


Featured researches published by Yucheng Sun.


Global Change Biology | 2013

Pea aphid promotes amino acid metabolism both in Medicago truncatula and bacteriocytes to favor aphid population growth under elevated CO2

Huijuan Guo; Yucheng Sun; Yuefei Li; Bin Tong; Marvin K. Harris; Keyan Zhu-Salzman; Feng Ge

Rising atmospheric CO(2) levels can dilute the nitrogen (N) resource in plant tissue, which is disadvantageous to many herbivorous insects. Aphids appear to be an exception that warrants further study. The effects of elevated CO(2) (750 ppm vs. 390 ppm) were evaluated on N assimilation and transamination by two Medicago truncatula genotypes, a N-fixing-deficient mutant (dnf1) and its wild-type control (Jemalong), with and without pea aphid (Acyrthosiphon pisum) infestation. Elevated CO(2) increased population abundance and feeding efficiency of aphids fed on Jemalong, but reduced those on dnf1. Without aphid infestation, elevated CO(2) increased photosynthetic rate, chlorophyll content, nodule number, biomass, and pod number for Jemalong, but only increased pod number and chlorophyll content for dnf1. Furthermore, aphid infested Jemalong plants had enhanced activities of N assimilation-related enzymes (glutamine synthetase, Glutamate synthase) and transamination-related enzymes (glutamate oxalate transaminase, glutamine phenylpyruvate transaminase), which presumably increased amino acid concentration in leaves and phloem sap under elevated CO(2). In contrast, aphid infested dnf1 plants had decreased activities of N assimilation-related enzymes and transmination-related enzymes and amino acid concentrations under elevated CO(2). Furthermore, elevated CO(2) up-regulated expression of genes relevant to amino acid metabolism in bacteriocytes of aphids associated with Jemalong, but down-regulated those associated with dnf1. Our results suggest that pea aphids actively elicit host responses that promote amino acid metabolism in both the host plant and in its bacteriocytes to favor the population growth of the aphid under elevated CO(2).


Environmental Entomology | 2008

Interactive effects of elevated CO2 and cotton cultivar on tri-trophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylaea japonica.

Feng Gao; Sanrong Zhu; Yucheng Sun; Li Du; Meghan Parajulee; Le Kang; Feng Ge

Abstract Information on the effects of enriched CO2 on both the chemical composition of plants and the consequences of such changes for performance of a herbivore and its predator is an important first step in understanding the responses of plants and insects to global environmental change. We examined interactions across three trophic levels, cotton, Gossypium hirsutum, an aphid herbivore, Aphis gossypii Glover, and a coccinellid predator, Propylaea japonica (Thunberg), as affected by elevated CO2 concentrations and crop cultivars. Plant carbon:nitrogen (C:N) ratios, condensed tannin, and gossypol content were significantly higher, and nitrogen content was significantly lower in plants exposed to elevated CO2 levels compared with that in plants exposed to ambient CO2. Cotton aphid survivorship significantly increased and free fatty acid content decreased with increased CO2 concentrations. No significant differences in survival and lifetime fecundity of P. japonica were observed between cultivars and CO2 concentration treatments. However, stage-specific larval durations of the lady beetle were significantly longer when fed aphids from elevated CO2 concentrations. Our results indicate that high gossypol in the cotton host plant had an antibiotic effect on A. gossypii and produced a positive effect on growth and development of P. japonica at the third trophic level. However, elevated CO2 concentrations showed a negative effect on P. japonica. We speculate that A. gossypii may become a more serious pest under an environment with elevated CO2 concentrations because of increased survivorship of aphid and longer development time of lady beetle.


PLOS ONE | 2011

Elevated CO2 Influences Nematode-Induced Defense Responses of Tomato Genotypes Differing in the JA Pathway

Yucheng Sun; Jin Yin; Haifeng Cao; Chuanyou Li; Le Kang; Feng Ge

Rising atmospheric CO2 concentrations can affect the induced defense of plants against chewing herbivores but little is known about whether elevated CO2 can change the induced defense of plants against parasitic nematodes. This study examined the interactions between the root-knot nematode Meloidogyne incognita and three isogenic tomato (Lycopersicon esculentum) genotypes grown under ambient (390 ppm) and elevated (750 ppm) CO2 in growth chambers. In a previous study with open-top chambers in the field, we reported that elevated CO2 increased the number of nematode-induced root galls in a JA-defense-dominated genotype but not in a wild-type or JA-defense-recessive genotype. In the current study, we tested the hypothesis that elevated CO2 will favor the salicylic acid (SA)-pathway defense but repress the jasmonic acid (JA)-pathway defense of plants against plant-parasitic nematodes. Our data showed that elevated CO2 reduced the JA-pathway defense against M. incognita in the wild-type and in a genotype in which defense is dominated by the JA pathway (a JA-defense-dominated genotype) but up-regulated the SA-pathway defense in the wild type and in a JA-defense-recessive genotype (jasmonate-deficient mutant). Our results suggest that, in terms of defense genes, secondary metabolites, and volatile organic compounds, induced defense of nematode-infected plants could be affected by elevated CO2, and that CO2-induced changes of plant resistance may lead to genotype-specific responses of plants to nematodes under elevated CO2. The changes in resistance against nematodes, however, were small relative to those reported for chewing insects.


Entomologia Experimentalis Et Applicata | 2010

Effects of elevated CO2 associated with maize on multiple generations of the cotton bollworm, Helicoverpa armigera

Jin Yin; Yucheng Sun; Gang Wu; Feng Ge

Under elevated environmental carbon dioxide (CO2), leaf chewers tend to compensate for decreased leaf nutritional quality with increased consumption; mortality and development times also increase and cause a reduction in the fitness of leaf chewers. However, the effect of elevated CO2 on multiple successive generations of these and other insects is not well understood. Furthermore, information about the direct effects of increased environmental CO2 on developmental time and consumption of herbivores is lacking. In this paper, we tested the hypothesis that cascade effects of elevated CO2 through plants, rather than the direct effects of elevated CO2, are the main factors decreasing the fitness of cotton bollworm, Helicoverpa armigera Hübner (Lepidoptera: Noctuidae). We used two series of experiments to quantify the growth, development, and consumption of H. armigera fed on an artificial diet or C4 plants (maize) grown under two CO2 levels (ambient vs. double ambient). In the first series of experiments, elevated CO2 had no effect on the population abundance or individual consumption for three successive generations of cotton bollworms fed on an artificial diet. In the second series of experiments, elevated CO2 reduced population abundance of cotton bollworm larvae for two successive generations when they were fed maize milky grains. The specific effects were longer larval duration, lower fecundity, and decreased rm of cotton bollworms. Furthermore, elevated CO2 increased individual consumption when cotton bollworm was fed maize milky grains for two successive generations and decreased the population’s total consumption in the first generation but increased it in the second generation. The results from this study indicate that: (1) The effects of elevated CO2 on three successive generations of cotton bollworm fed on artificial diet were weak, or even non‐existent, and (2) elevated CO2 increased the consumption when cotton bollworm were fed maize. Our study also suggests that the damage inflicted by cotton bollworm on maize (a C4 plant) will be seriously affected by the increases in atmospheric CO2, which is unlike our previous results for spring wheat (a C3 plant).


Environmental Entomology | 2011

A Modified Program for Estimating the Parameters of the SSI Model

Peijian Shi; Takaya Ikemoto; Chikahiro Egami; Yucheng Sun; Feng Ge

ABSTRACT Temperature has a significant influence on the development rates of poikilotherms. There are many nonlinear mathematical models for describing temperature-dependent development rates. Among these models, the Sharpe-Schoolfield (SS) model with six parameters may be the most popular one. The reciprocal of the denominator in the SS model represents the probability of enzyme being in the active state. There is a reference temperature, 25°C, which was defined as a temperature at which the probability of enzyme being in the active state reaches its maximum. However, several examples of using the SS model to fit experimental data display that the probability of enzyme being in the active state does not reach its maximum at 25°C. For different taxonomic groups, the temperatures at which the probability of enzyme being in the active state reaches its maximum might be different. Thus, Ikemoto modified the SS model to a new model (i.e., the SSI model) which can meet the condition that at a particular temperature the probability of enzyme being in the active state can reach its maximum. In addition, Ikemoto related the SSI model to the linear model and devised an algorithm to estimate model parameters; however, that original program of Ikemoto is so timeconsuming that it limits the use of the SSI model. We provide a new program for a faster estimation of the parameters in the SSI model. One complete run of the new program takes less than 1 min (using R 2.10.1). This new program allows investigators to use the SSI model more readily. In addition, we test the linear approximation of the SSI model over three temperature ranges: low, middle, and high temperatures. We also provide a method for calculating the tangent at any point in the SSI model.


PLOS ONE | 2012

Elevated CO2 Reduces the Resistance and Tolerance of Tomato Plants to Helicoverpa armigera by Suppressing the JA Signaling Pathway

Huijuan Guo; Yucheng Sun; Qin Ren; Keyan Zhu-Salzman; Le Kang; Chenzhu Wang; Chuanyou Li; Feng Ge

Both resistance and tolerance, which are two strategies that plants use to limit biotic stress, are affected by the abiotic environment including atmospheric CO2 levels. We tested the hypothesis that elevated CO2 would reduce resistance (i.e., the ability to prevent damage) but enhance tolerance (i.e., the ability to regrow and compensate for damage after the damage has occurred) of tomato plants to the cotton bollworm, Helicoverpa armigera. The results showed that elevated CO2 reduced resistance by decreasing the jasmonic acid (JA) level and activities of lipoxygenase, proteinase inhibitors, and polyphenol oxidase in wild-type (WT) plants infested with H. armigera. Consequently, the activities of total protease, trypsin-like enzymes, and weak and active alkaline trypsin-like enzymes increased in the midgut of H. armigera when fed on WT plants grown under elevated CO2. Unexpectedly, the tolerance of the WT to H. armigera (in terms of photosynthetic rate, activity of sucrose phosphate synthases, flower number, and plant biomass and height) was also reduced by elevated CO2. Under ambient CO2, the expression of resistance and tolerance to H. armigera was much greater in wild type than in spr2 (a JA-deficient genotype) plants, but elevated CO2 reduced these differences of the resistance and tolerance between WT and spr2 plants. The results suggest that the JA signaling pathway contributes to both plant resistance and tolerance to herbivorous insects and that by suppressing the JA signaling pathway, elevated CO2 will simultaneously reduce the resistance and tolerance of tomato plants.


New Phytologist | 2014

Elevated CO2 decreases the response of the ethylene signaling pathway in Medicago truncatula and increases the abundance of the pea aphid.

Huijuan Guo; Yucheng Sun; Yuefei Li; Xianghui Liu; Wen-Hao Zhang; Feng Ge

The performance of herbivorous insects is greatly affected by plant nutritional quality and resistance, which are likely to be altered by rising concentrations of atmospheric CO2 . We previously reported that elevated CO2 enhanced biological nitrogen (N) fixation of Medicago truncatula, which could result in an increased supply of amino acids to the pea aphid (Acyrthosiphon pisum). The current study examined the N nutritional quality and aphid resistance of sickle, an ethylene-insensitive mutant of M. truncatula with supernodulation, and its wild-type control A17 under elevated CO2 in open-top field chambers. Regardless of CO2 concentration, growth and amino acid content were greater and aphid resistance was lower in sickle than in A17. Elevated CO2 up-regulated N assimilation and transamination-related enzymes activities and increased phloem amino acids in both genotypes. Furthermore, elevated CO2 down-regulated expression of 1-amino-cyclopropane-carboxylic acid (ACC), sickle gene (SKL) and ethylene response transcription factors (ERF) genes in the ethylene signaling pathway of A17 when infested by aphids and decreased resistance against aphids in terms of lower activities of superoxide dismutase (SOD), peroxidase (POD), and polyphenol oxidase (PPO). Our results suggest that elevated CO2 suppresses the ethylene signaling pathway in M. truncatula, which results in an increase in plant nutritional quality for aphids and a decrease in plant resistance against aphids.


Plant Science | 2013

Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses.

Yucheng Sun; Huijuan Guo; Keyan Zhu-Salzman; Feng Ge

Rising atmospheric CO2 concentrations can affect the induced defense of plants against herbivory by chewing insects, but little is known about whether elevated CO2 can change the inducible defense of plants against herbivory by aphids, which are phloem-sucking rather than tissue-chewing insects. Interactions between the green peach aphid Myzus persicae and four isogenic Arabidopsis thaliana genotypes including wild type and three induced defense pathway deficient mutants were examined under ambient and elevated CO2. Our data showed that elevated CO2 increased the population abundance of peach aphid when reared on wild type and SA-deficient mutant plants. Regardless of aphid infestation, elevated CO2 decreased the jasmonic acid (JA) but increased the salicylic acid (SA) level in wild-type plants. In addition, elevated CO2 increased SA level in SA-deficient mutant while did not change the JA level in JA-deficient mutant. Pathway enrichment analysis based on high-throughput transcriptome sequencing suggested that CO2 level, aphid infestation, and their interactions (respectively) altered plant defense pathways. Furthermore, qPCR results showed that elevated CO2 up-regulated the expression of SA-dependent defense genes but down-regulated the expression of JA/ethylene-dependent defense genes in wild-type plants infested by aphids. The current study indicated that elevated CO2 tended to enhance the ineffective defense-SA signaling pathway and to reduce the effective defense-JA signaling pathway against aphids, which resulted in increased aphid numbers.


Plant Biology | 2012

Lower incidence and severity of tomato virus in elevated CO2 is accompanied by modulated plant induced defence in tomato

L. Huang; Q. Ren; Yucheng Sun; L. Ye; H. Cao; Feng Ge

Elevation in atmospheric CO(2) concentration broadly affects plant phenology and physiology, and these effects may alter the performance of plant viruses. The effects of elevated CO(2) on the susceptibility of tomato plants to Tomato yellow leaf curl virus (TYLCV) were examined for two successive years in open top chambers (OTC) in the field. We experimentally tested the hypothesis that elevated CO(2) would reduce the incidence and severity of TYLCV on tomato by altering plant defence strategies. Our results showed that elevated CO(2) decreased TYLCV disease incidence (by 14.6% in 2009 and 11.8% in 2010) and decreased disease severity (by 20.0% in 2009 and 10.4% in 2010). Elevated CO(2) also decreased the level of TYLCV coat protein in tomato leaves. Regardless of virus infection, elevated CO(2) increased plant height and aboveground biomass. Additionally, elevated CO(2) increased the leaf C:N ratio of tomato, but decreased soluble protein content in leaves. Notably, elevated CO(2) increased the salicylic acid (SA) level in uninfected and infected plants. In contrast, elevated CO(2) reduced jasmonic acid (JA) in uninfected plants while it increased JA and abscisic acid (ABA) in virus-infected plants. Furthermore, combined exogenous SA and JA application enhanced resistance to TYLCV more than application of either SA or JA alone. Our results suggest that the modulated antagonistic relationship between SA and JA under elevated CO(2) makes a great contribution to increased tomato resistance to TYLCV, and the predicted increases in tomato productivity may be enhanced by reduced plant virus susceptibility under projected rising CO(2) conditions.


Insect Science | 2011

Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids

Yucheng Sun; Li Feng; Feng Gao; Feng Ge

Abstract  Effects of CO2 level (ambient vs. elevated) on the interactions among three cotton (Gossypium hirsutum) genotypes, the cotton aphid (Aphis gossypii Glover), and its hymenoptera parasitoid (Lysiphlebia japonica Ashrnead) were quantified. It was hypothesized that aphid‐parasitoid interactions in crop systems may be altered by elevated CO2, and that the degree of change is influenced by plant genotype. The cotton genotypes had high (M9101), medium (HZ401) and low (ZMS13) gossypol contents, and the response to elevated CO2 was genotype‐specific. Elevated CO2 increased the ratio of total non‐structural carbohydrates to nitrogen (TNC: N) in the high‐gossypol genotype and the medium‐gossypol genotype. For all three genotypes, elevated CO2 had no effect on concentrations of gossypol and condensed tannins. A. gossypii fitness declined when aphids were reared on the high‐gossypol genotype versus the low‐gossypol genotype under elevated CO2. Furthermore, elevated CO2 decreased the developmental time of L. japonica associated with the high‐gossypol genotype and the low‐gossypol genotype, but did not affect parasitism or emergence rates. Our study suggests that the abundance of A. gossypii on cotton will not be directly affected by increases in atmospheric CO2. We speculate that A. gossypii may diminish in pest status in elevated CO2 and high‐gossypol genotype environments because of reduced fitness to the high‐gossypol genotype and shorter developmental time of L. japonica.

Collaboration


Dive into the Yucheng Sun's collaboration.

Top Co-Authors

Avatar

Feng Ge

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huijuan Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanyou Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jin Yin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gang Wu

Huazhong Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Honggang Guo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Le Kang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Peijian Shi

Nanjing Forestry University

View shared research outputs
Top Co-Authors

Avatar

Qin Ren

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge