Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yudi Pawitan is active.

Publication


Featured researches published by Yudi Pawitan.


The Lancet | 2009

COMMON GENETIC DETERMINANTS OF SCHIZOPHRENIA AND BIPOLAR DISORDER IN SWEDISH FAMILIES: A POPULATION-BASED STUDY

Paul Lichtenstein; Benjamin H. Yip; Camilla Björk; Yudi Pawitan; Tyrone D. Cannon; Patrick F. Sullivan; Christina M. Hultman

BACKGROUND Whether schizophrenia and bipolar disorder are the clinical outcomes of discrete or shared causative processes is much debated in psychiatry. We aimed to assess genetic and environmental contributions to liability for schizophrenia, bipolar disorder, and their comorbidity. METHODS We linked the multi-generation register, which contains information about all children and their parents in Sweden, and the hospital discharge register, which includes all public psychiatric inpatient admissions in Sweden. We identified 9 009 202 unique individuals in more than 2 million nuclear families between 1973 and 2004. Risks for schizophrenia, bipolar disorder, and their comorbidity were assessed for biological and adoptive parents, offspring, full-siblings and half-siblings of probands with one of the diseases. We used a multivariate generalised linear mixed model for analysis of genetic and environmental contributions to liability for schizophrenia, bipolar disorder, and the comorbidity. FINDINGS First-degree relatives of probands with either schizophrenia (n=35 985) or bipolar disorder (n=40 487) were at increased risk of these disorders. Half-siblings had a significantly increased risk (schizophrenia: relative risk [RR] 3.6, 95% CI 2.3-5.5 for maternal half-siblings, and 2.7, 1.9-3.8 for paternal half-siblings; bipolar disorder: 4.5, 2.7-7.4 for maternal half-siblings, and 2.4, 1.4-4.1 for paternal half-siblings), but substantially lower than that of the full-siblings (schizophrenia: 9.0, 8.5-11.6; bipolar disorder: 7.9, 7.1-8.8). When relatives of probands with bipolar disorder were analysed, increased risks for schizophrenia existed for all relationships, including adopted children to biological parents with bipolar disorder. Heritability for schizophrenia and bipolar disorder was 64% and 59%, respectively. Shared environmental effects were small but substantial (schizophrenia: 4.5%, 4.4%-7.4%; bipolar disorder: 3.4%, 2.3%-6.2%) for both disorders. The comorbidity between disorders was mainly (63%) due to additive genetic effects common to both disorders. INTERPRETATION Similar to molecular genetic studies, we showed evidence that schizophrenia and bipolar disorder partly share a common genetic cause. These results challenge the current nosological dichotomy between schizophrenia and bipolar disorder, and are consistent with a reappraisal of these disorders as distinct diagnostic entities.


Breast Cancer Research | 2005

Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts

Yudi Pawitan; Judith Bjöhle; Lukas Amler; Anna-Lena Borg; Suzanne Egyhazi; Per Hall; Xia Han; Lars Holmberg; Fei Huang; Sigrid Klaar; Edison T. Liu; Lance D. Miller; Hans Nordgren; Alexander Ploner; Kerstin Sandelin; Peter Shaw; Johanna Smeds; Lambert Skoog; Sara Wedrén; Jonas Bergh

IntroductionAdjuvant breast cancer therapy significantly improves survival, but overtreatment and undertreatment are major problems. Breast cancer expression profiling has so far mainly been used to identify women with a poor prognosis as candidates for adjuvant therapy but without demonstrated value for therapy prediction.MethodsWe obtained the gene expression profiles of 159 population-derived breast cancer patients, and used hierarchical clustering to identify the signature associated with prognosis and impact of adjuvant therapies, defined as distant metastasis or death within 5 years. Independent datasets of 76 treated population-derived Swedish patients, 135 untreated population-derived Swedish patients and 78 Dutch patients were used for validation. The inclusion and exclusion criteria for the studies of population-derived Swedish patients were defined.ResultsAmong the 159 patients, a subset of 64 genes was found to give an optimal separation of patients with good and poor outcomes. Hierarchical clustering revealed three subgroups: patients who did well with therapy, patients who did well without therapy, and patients that failed to benefit from given therapy. The expression profile gave significantly better prognostication (odds ratio, 4.19; P = 0.007) (breast cancer end-points odds ratio, 10.64) compared with the Elston–Ellis histological grading (odds ratio of grade 2 vs 1 and grade 3 vs 1, 2.81 and 3.32 respectively; P = 0.24 and 0.16), tumor stage (odds ratio of stage 2 vs 1 and stage 3 vs 1, 1.11 and 1.28; P = 0.83 and 0.68) and age (odds ratio, 0.11; P = 0.55). The risk groups were consistent and validated in the independent Swedish and Dutch data sets used with 211 and 78 patients, respectively.ConclusionWe have identified discriminatory gene expression signatures working both on untreated and systematically treated primary breast cancer patients with the potential to spare them from adjuvant therapy.


Cancer Research | 2006

Genetic Reclassification of Histologic Grade Delineates New Clinical Subtypes of Breast Cancer

Anna V. Ivshina; Joshy George; Oleg V. Senko; Benjamin Mow; Thomas Choudary Putti; Johanna Smeds; Thomas Lindahl; Yudi Pawitan; Per Hall; Hans Nordgren; John Wong; Edison T. Liu; Jonas Bergh; Vladimir A. Kuznetsov; Lance D. Miller

Histologic grading of breast cancer defines morphologic subtypes informative of metastatic potential, although not without considerable interobserver disagreement and clinical heterogeneity particularly among the moderately differentiated grade 2 (G2) tumors. We posited that a gene expression signature capable of discerning tumors of grade 1 (G1) and grade 3 (G3) histology might provide a more objective measure of grade with prognostic benefit for patients with G2 disease. To this end, we studied the expression profiles of 347 primary invasive breast tumors analyzed on Affymetrix microarrays. Using class prediction algorithms, we identified 264 robust grade-associated markers, six of which could accurately classify G1 and G3 tumors, and separate G2 tumors into two highly discriminant classes (termed G2a and G2b genetic grades) with patient survival outcomes highly similar to those with G1 and G3 histology, respectively. Statistical analysis of conventional clinical variables further distinguished G2a and G2b subtypes from each other, but also from histologic G1 and G3 tumors. In multivariate analyses, genetic grade was consistently found to be an independent prognostic indicator of disease recurrence comparable with that of lymph node status and tumor size. When incorporated into the Nottingham prognostic index, genetic grade enhanced detection of patients with less harmful tumors, likely to benefit little from adjuvant therapy. Our findings show that a genetic grade signature can improve prognosis and therapeutic planning for breast cancer patients, and support the view that low- and high-grade disease, as defined genetically, reflect independent pathobiological entities rather than a continuum of cancer progression.


Oncogene | 2007

TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort.

Francesca Demichelis; Katja Fall; Sven Perner; Ove Andrén; Folke Schmidt; Sunita R. Setlur; Yujin Hoshida; Juan Miguel Mosquera; Yudi Pawitan; Charles Lee; Hans-Olov Adami; Lorelei A. Mucci; Philip W. Kantoff; Swen-Olof Andersson; Arul M. Chinnaiyan; Jan-Erik Johansson; Mark A. Rubin

The identification of the TMPRSS2:ERG fusion in prostate cancer suggests that distinct molecular subtypes may define risk for disease progression. In surgical series, TMPRSS2:ERG fusion was identified in 50% of the tumors. Here, we report on a population-based cohort of men with localized prostate cancers followed by expectant (watchful waiting) therapy with 15% (17/111) TMPRSS2:ERG fusion. We identified a statistically significant association between TMPRSS2:ERG fusion and prostate cancer specific death (cumulative incidence ratio=2.7, P<0.01, 95% confidence interval=1.3–5.8). Quantitative reverse-transcription–polymerase chain reaction demonstrated high estrogen-regulated gene (ERG) expression to be associated with TMPRSS2:ERG fusion (P<0.005). These data suggest that TMPRSS2:ERG fusion prostate cancers may have a more aggressive phenotype, possibly mediated through increased ERG expression.


Nature Genetics | 2014

Most genetic risk for autism resides with common variation

Trent Gaugler; Lambertus Klei; Stephan J. Sanders; Corneliu A. Bodea; Arthur P. Goldberg; Ann B. Lee; Milind Mahajan; Dina Manaa; Yudi Pawitan; Jennifer Reichert; Stephan Ripke; Sven Sandin; Pamela Sklar; Oscar Svantesson; Abraham Reichenberg; Christina M. Hultman; Bernie Devlin; Kathryn Roeder; Joseph D. Buxbaum

A key component of genetic architecture is the allelic spectrum influencing trait variability. For autism spectrum disorder (herein termed autism), the nature of the allelic spectrum is uncertain. Individual risk-associated genes have been identified from rare variation, especially de novo mutations. From this evidence, one might conclude that rare variation dominates the allelic spectrum in autism, yet recent studies show that common variation, individually of small effect, has substantial impact en masse. At issue is how much of an impact relative to rare variation this common variation has. Using a unique epidemiological sample from Sweden, new methods that distinguish total narrow-sense heritability from that due to common variation and synthesis of results from other studies, we reach several conclusions about autisms genetic architecture: its narrow-sense heritability is ∼52.4%, with most due to common variation, and rare de novo mutations contribute substantially to individual liability, yet their contribution to variance in liability, 2.6%, is modest compared to that for heritable variation.


Bioinformatics | 2005

False discovery rate, sensitivity and sample size for microarray studies

Yudi Pawitan; Stefan Michiels; Serge Koscielny; Arief Gusnanto; Alexander Ploner

MOTIVATION In microarray data studies most researchers are keenly aware of the potentially high rate of false positives and the need to control it. One key statistical shift is the move away from the well-known P-value to false discovery rate (FDR). Less discussion perhaps has been spent on the sensitivity or the associated false negative rate (FNR). The purpose of this paper is to explain in simple ways why the shift from P-value to FDR for statistical assessment of microarray data is necessary, to elucidate the determining factors of FDR and, for a two-sample comparative study, to discuss its control via sample size at the design stage. RESULTS We use a mixture model, involving differentially expressed (DE) and non-DE genes, that captures the most common problem of finding DE genes. Factors determining FDR are (1) the proportion of truly differentially expressed genes, (2) the distribution of the true differences, (3) measurement variability and (4) sample size. Many current small microarray studies are plagued with large FDR, but controlling FDR alone can lead to unacceptably large FNR. In evaluating a design of a microarray study, sensitivity or FNR curves should be computed routinely together with FDR curves. Under certain assumptions, the FDR and FNR curves coincide, thus simplifying the choice of sample size for controlling the FDR and FNR jointly.


Breast Cancer Research | 2006

Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients

Stefano Calza; Per Hall; Gert Auer; Judith Bjöhle; Sigrid Klaar; Ulrike Kronenwett; Edison T. Liu; Lance D. Miller; Alexander Ploner; Johanna Smeds; Jonas Bergh; Yudi Pawitan

BackgroundMolecular markers and the rich biological information they contain have great potential for cancer diagnosis, prognostication and therapy prediction. So far, however, they have not superseded routine histopathology and staging criteria, partly because the few studies performed on molecular subtyping have had little validation and limited clinical characterization.MethodsWe obtained gene expression and clinical data for 412 breast cancers obtained from population-based cohorts of patients from Stockholm and Uppsala, Sweden. Using the intrinsic set of approximately 500 genes derived in the Norway/Stanford breast cancer data, we validated the existence of five molecular subtypes – basal-like, ERBB2, luminal A/B and normal-like – and characterized these subtypes extensively with the use of conventional clinical variables.ResultsWe found an overall 77.5% concordance between the centroid prediction of the Swedish cohort by using the Norway/Stanford signature and the k-means clustering performed internally within the Swedish cohort. The highest rate of discordant assignments occurred between the luminal A and luminal B subtypes and between the luminal B and ERBB2 subtypes. The subtypes varied significantly in terms of grade (p < 0.001), p53 mutation (p < 0.001) and genomic instability (p = 0.01), but surprisingly there was little difference in lymph-node metastasis (p = 0.31). Furthermore, current users of hormone-replacement therapy were strikingly over-represented in the normal-like subgroup (p < 0.001). Separate analyses of the patients who received endocrine therapy and those who did not receive any adjuvant therapy supported the previous hypothesis that the basal-like subtype responded to adjuvant treatment, whereas the ERBB2 and luminal B subtypes were poor responders.ConclusionWe found that the intrinsic molecular subtypes of breast cancer are broadly present in a diverse collection of patients from a population-based cohort in Sweden. The intrinsic gene set, originally selected to reveal stable tumor characteristics, was shown to have a strong correlation with progression-related properties such as grade, p53 mutation and genomic instability.


Proceedings of the National Academy of Sciences of the United States of America | 2008

An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer

Ralph R. Weichselbaum; Hemant Ishwaran; Taewon Yoon; Dimitry S.A. Nuyten; Samuel W. Baker; Nikolai N. Khodarev; Andy W. Su; Arif Y. Shaikh; Paul Roach; Bas Kreike; Bernard Roizman; Jonas Bergh; Yudi Pawitan; Marc J. van de Vijver; Andy J. Minn

Individualization of cancer management requires prognostic markers and therapy-predictive markers. Prognostic markers assess risk of disease progression independent of therapy, whereas therapy-predictive markers identify patients whose disease is sensitive or resistant to treatment. We show that an experimentally derived IFN-related DNA damage resistance signature (IRDS) is associated with resistance to chemotherapy and/or radiation across different cancer cell lines. The IRDS genes STAT1, ISG15, and IFIT1 all mediate experimental resistance. Clinical analyses reveal that IRDS(+) and IRDS(−) states exist among common human cancers. In breast cancer, a seven–gene-pair classifier predicts for efficacy of adjuvant chemotherapy and for local-regional control after radiation. By providing information on treatment sensitivity or resistance, the IRDS improves outcome prediction when combined with standard markers, risk groups, or other genomic classifiers.


Human Genetics | 2011

Revisiting Mendelian disorders through exome sequencing

Chee-Seng Ku; Nasheen Naidoo; Yudi Pawitan

Over the past several years, more focus has been placed on dissecting the genetic basis of complex diseases and traits through genome-wide association studies. In contrast, Mendelian disorders have received little attention mainly due to the lack of newer and more powerful methods to study these disorders. Linkage studies have previously been the main tool to elucidate the genetics of Mendelian disorders; however, extremely rare disorders or sporadic cases caused by de novo variants are not amendable to this study design. Exome sequencing has now become technically feasible and more cost-effective due to the recent advances in high-throughput sequence capture methods and next-generation sequencing technologies which have offered new opportunities for Mendelian disorder research. Exome sequencing has been swiftly applied to the discovery of new causal variants and candidate genes for a number of Mendelian disorders such as Kabuki syndrome, Miller syndrome and Fowler syndrome. In addition, de novo variants were also identified for sporadic cases, which would have not been possible without exome sequencing. Although exome sequencing has been proven to be a promising approach to study Mendelian disorders, several shortcomings of this method must be noted, such as the inability to capture regulatory or evolutionary conserved sequences in non-coding regions and the incomplete capturing of all exons.


Journal of Human Genetics | 2010

The pursuit of genome-wide association studies: where are we now?

Chee-Seng Ku; En Yun Loy; Yudi Pawitan; Kee Seng Chia

It is now 5 years since the first genome-wide association studies (GWAS), published in 2005, identified a common risk allele with large effect size for age-related macular degeneration in a small sample set. Following this exciting finding, researchers have become optimistic about the prospect of the genome-wide association approach. However, most of the risk alleles identified in the subsequent GWAS for various complex diseases are common with small effect sizes (odds ratio <1.5). So far, more than 450 GWAS have been published and the associations of greater than 2000 single nucleotide polymorphisms (SNPs) or genetic loci were reported. The aim of this review paper is to give an overview of the evolving field of GWAS, discuss the progress that has been made by GWAS and some of the interesting findings, and summarize what we have learned over the past 5 years about the genetic basis of human complex diseases. This review will focus on GWAS of SNPs association for complex diseases but not studies of copy number variations.

Collaboration


Dive into the Yudi Pawitan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chee-Seng Ku

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Per Hall

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar

Youngjo Lee

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kee Seng Chia

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge