Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yue Feng is active.

Publication


Featured researches published by Yue Feng.


Nature | 2012

The oyster genome reveals stress adaptation and complexity of shell formation

Guofan Zhang; Xiaodong Fang; Ximing Guo; Li Li; Ruibang Luo; Fei Xu; Pengcheng Yang; Linlin Zhang; Xiaotong Wang; Haigang Qi; Zhiqiang Xiong; Huayong Que; Yinlong Xie; Peter W. H. Holland; Jordi Paps; Yabing Zhu; Fucun Wu; Yuanxin Chen; Jiafeng Wang; Chunfang Peng; Jie Meng; Lan Yang; Jun Liu; Bo Wen; Na Zhang; Zhiyong Huang; Qihui Zhu; Yue Feng; Andrew Mount; Dennis Hedgecock

The Pacific oyster Crassostrea gigas belongs to one of the most species-rich but genomically poorly explored phyla, the Mollusca. Here we report the sequencing and assembly of the oyster genome using short reads and a fosmid-pooling strategy, along with transcriptomes of development and stress response and the proteome of the shell. The oyster genome is highly polymorphic and rich in repetitive sequences, with some transposable elements still actively shaping variation. Transcriptome studies reveal an extensive set of genes responding to environmental stress. The expansion of genes coding for heat shock protein 70 and inhibitors of apoptosis is probably central to the oyster’s adaptation to sessile life in the highly stressful intertidal zone. Our analyses also show that shell formation in molluscs is more complex than currently understood and involves extensive participation of cells and their exosomes. The oyster genome sequence fills a void in our understanding of the Lophotrochozoa.


Nature Communications | 2014

The locust genome provides insight into swarm formation and long-distance flight

Xianhui Wang; Xiaodong Fang; Pengcheng Yang; Xuanting Jiang; Feng Jiang; De-Jian Zhao; Bolei Li; Feng Cui; Jianing Wei; Chuan Ma; Y. Wang; Jing He; Yuan Luo; Zhifeng Wang; Xiaojiao Guo; Wei Guo; Xuesong Wang; Yi Zhang; Meiling Yang; Shuguang Hao; Bing Chen; Zongyuan Ma; Dan Yu; Zhiqiang Xiong; Yabing Zhu; Dingding Fan; Lijuan Han; Bo Wang; Yuanxin Chen; Junwen Wang

Locusts are one of the world’s most destructive agricultural pests and represent a useful model system in entomology. Here we present a draft 6.5 Gb genome sequence of Locusta migratoria, which is the largest animal genome sequenced so far. Our findings indicate that the large genome size of L. migratoria is likely to be because of transposable element proliferation combined with slow rates of loss for these elements. Methylome and transcriptome analyses reveal complex regulatory mechanisms involved in microtubule dynamic-mediated synapse plasticity during phase change. We find significant expansion of gene families associated with energy consumption and detoxification, consistent with long-distance flight capacity and phytophagy. We report hundreds of potential insecticide target genes, including cys-loop ligand-gated ion channels, G-protein-coupled receptors and lethal genes. The L. migratoria genome sequence offers new insights into the biology and sustainable management of this pest species, and will promote its wide use as a model system.


Nature Communications | 2014

Spider genomes provide insight into composition and evolution of venom and silk

Kristian W. Sanggaard; Jesper Bechsgaard; Xiaodong Fang; Jinjie Duan; Thomas F. Dyrlund; Vikas Gupta; Xuanting Jiang; Ling Cheng; Dingding Fan; Yue Feng; Lijuan Han; Zhiyong Huang; Zongze Wu; Li Liao; Virginia Settepani; Ida B. Thøgersen; Bram Vanthournout; Tobias Wang; Yabing Zhu; Peter Funch; Jan J. Enghild; Leif Schauser; Stig U. Andersen; Palle Villesen; Mikkel H. Schierup; Trine Bilde; Jun Wang

Spiders are ecologically important predators with complex venom and extraordinarily tough silk that enables capture of large prey. Here we present the assembled genome of the social velvet spider and a draft assembly of the tarantula genome that represent two major taxonomic groups of spiders. The spider genomes are large with short exons and long introns, reminiscent of mammalian genomes. Phylogenetic analyses place spiders and ticks as sister groups supporting polyphyly of the Acari. Complex sets of venom and silk genes/proteins are identified. We find that venom genes evolved by sequential duplication, and that the toxic effect of venom is most likely activated by proteases present in the venom. The set of silk genes reveals a highly dynamic gene evolution, new types of silk genes and proteins, and a novel use of aciniform silk. These insights create new opportunities for pharmacological applications of venom and biomaterial applications of silk.


Nature Communications | 2013

Genome analysis reveals insights into physiology and longevity of the Brandt’s bat Myotis brandtii

Inge Seim; Xiaodong Fang; Zhiqiang Xiong; Alexey V. Lobanov; Zhiyong Huang; Siming Ma; Yue Feng; Anton A. Turanov; Yabing Zhu; Tobias L. Lenz; Maxim V. Gerashchenko; Dingding Fan; Sun Hee Yim; Xiaoming Yao; Daniel D. Jordan; Yingqi Xiong; Yong Xin Ma; Andrey N. Lyapunov; Guanxing Chen; Oksana I. Kulakova; Yudong Sun; Sang-Goo Lee; Roderick T. Bronson; Alexey Moskalev; Shamil R. Sunyaev; Guojie Zhang; Anders Krogh; Jun Wang; Vadim N. Gladyshev

Bats account for one-fifth of mammalian species, are the only mammals with powered flight, and are among the few animals that echolocate. The insect-eating Brandt’s bat (Myotis brandtii) is the longest-lived bat species known to date (lifespan exceeds 40 years) and, at 4–8 g adult body weight, is the most extreme mammal with regard to disparity between body mass and longevity. Here we report sequencing and analysis of the Brandt’s bat genome and transcriptome, which suggest adaptations consistent with echolocation and hibernation, as well as altered metabolism, reproduction and visual function. Unique sequence changes in growth hormone and insulin-like growth factor 1 receptors are also observed. The data suggest that an altered growth hormone/insulin-like growth factor 1 axis, which may be common to other long-lived bat species, together with adaptations such as hibernation and low reproductive rate, contribute to the exceptional lifespan of the Brandt’s bat.


Nature Communications | 2015

Outbred genome sequencing and CRISPR/Cas9 gene editing in butterflies

Xueyan Li; Dingding Fan; Wei Zhang; Guichun Liu; Lu Zhang; Li Zhao; Xiaodong Fang; Lei Chen; Yang Dong; Yuan Chen; Yun Ding; Ruoping Zhao; Mingji Feng; Yabing Zhu; Yue Feng; Xuanting Jiang; Deying Zhu; Hui Xiang; Xikan Feng; Shuaicheng Li; Jun Wang; Guojie Zhang; Marcus R. Kronforst; Wen Wang

Butterflies are exceptionally diverse but their potential as an experimental system has been limited by the difficulty of deciphering heterozygous genomes and a lack of genetic manipulation technology. Here we use a hybrid assembly approach to construct high-quality reference genomes for Papilio xuthus (contig and scaffold N50: 492 kb, 3.4 Mb) and Papilio machaon (contig and scaffold N50: 81 kb, 1.15 Mb), highly heterozygous species that differ in host plant affiliations, and adult and larval colour patterns. Integrating comparative genomics and analyses of gene expression yields multiple insights into butterfly evolution, including potential roles of specific genes in recent diversification. To functionally test gene function, we develop an efficient (up to 92.5%) CRISPR/Cas9 gene editing method that yields obvious phenotypes with three genes, Abdominal-B, ebony and frizzled. Our results provide valuable genomic and technological resources for butterflies and unlock their potential as a genetic model system.


Nature Communications | 2014

Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Xiaodong Fang; Eviatar Nevo; Lijuan Han; Erez Y. Levanon; Jing Zhao; Aaron Avivi; Denis M. Larkin; Xuanting Jiang; Sergey Feranchuk; Yabing Zhu; Alla Fishman; Yue Feng; Noa Sher; Zhiqiang Xiong; Thomas Hankeln; Zhiyong Huang; Vera Gorbunova; Lu Zhang; Wei Zhao; Derek E. Wildman; Yingqi Xiong; Andrei V. Gudkov; Qiumei Zheng; Gideon Rechavi; Sanyang Liu; Lily Bazak; Jie Chen; Binyamin A. Knisbacher; Yao Lu; Imad Shams

The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.


GigaScience | 2012

The sequence and analysis of a Chinese pig genome

Xiaodong Fang; Yulian Mou; Zhiyong Huang; Yong Li; Lijuan Han; Yanfeng Zhang; Yue Feng; Yuanxin Chen; Xuanting Jiang; Wei Zhao; Xiaoqing Sun; Zhiqiang Xiong; Lan Yang; Huan Liu; Dingding Fan; Likai Mao; Lijie Ren; Chuxin Liu; Juan Wang; Kui Li; Guangbiao Wang; Shulin Yang; Liangxue Lai; Guojie Zhang; Yingrui Li; Jun Wang; Lars Bolund; Huanming Yang; Jian Wang; Shutang Feng

BackgroundThe pig is an economically important food source, amounting to approximately 40% of all meat consumed worldwide. Pigs also serve as an important model organism because of their similarity to humans at the anatomical, physiological and genetic level, making them very useful for studying a variety of human diseases. A pig strain of particular interest is the miniature pig, specifically the Wuzhishan pig (WZSP), as it has been extensively inbred. Its high level of homozygosity offers increased ease for selective breeding for specific traits and a more straightforward understanding of the genetic changes that underlie its biological characteristics. WZSP also serves as a promising means for applications in surgery, tissue engineering, and xenotransplantation. Here, we report the sequencing and analysis of an inbreeding WZSP genome.ResultsOur results reveal some unique genomic features, including a relatively high level of homozygosity in the diploid genome, an unusual distribution of heterozygosity, an over-representation of tRNA-derived transposable elements, a small amount of porcine endogenous retrovirus, and a lack of type C retroviruses. In addition, we carried out systematic research on gene evolution, together with a detailed investigation of the counterparts of human drug target genes.ConclusionOur results provide the opportunity to more clearly define the genomic character of pig, which could enhance our ability to create more useful pig models.


PLOS ONE | 2014

Genome and Transcriptome Analysis of the Fungal Pathogen Fusarium oxysporum f. sp. cubense Causing Banana Vascular Wilt Disease

Lijia Guo; Lijuan Han; Laying Yang; Huicai Zeng; Dingding Fan; Yabin Zhu; Yue Feng; Guofen Wang; Chunfang Peng; Xuanting Jiang; Dajie Zhou; Peixiang Ni; Changcong Liang; Lei Liu; Jun Wang; Chao Mao; Xiaodong Fang; Ming Peng; Junsheng Huang

Background The asexual fungus Fusarium oxysporum f. sp. cubense (Foc) causing vascular wilt disease is one of the most devastating pathogens of banana (Musa spp.). To understand the molecular underpinning of pathogenicity in Foc, the genomes and transcriptomes of two Foc isolates were sequenced. Methodology/Principal Findings Genome analysis revealed that the genome structures of race 1 and race 4 isolates were highly syntenic with those of F. oxysporum f. sp. lycopersici strain Fol4287. A large number of putative virulence associated genes were identified in both Foc genomes, including genes putatively involved in root attachment, cell degradation, detoxification of toxin, transport, secondary metabolites biosynthesis and signal transductions. Importantly, relative to the Foc race 1 isolate (Foc1), the Foc race 4 isolate (Foc4) has evolved with some expanded gene families of transporters and transcription factors for transport of toxins and nutrients that may facilitate its ability to adapt to host environments and contribute to pathogenicity to banana. Transcriptome analysis disclosed a significant difference in transcriptional responses between Foc1 and Foc4 at 48 h post inoculation to the banana ‘Brazil’ in comparison with the vegetative growth stage. Of particular note, more virulence-associated genes were up regulated in Foc4 than in Foc1. Several signaling pathways like the mitogen-activated protein kinase Fmk1 mediated invasion growth pathway, the FGA1-mediated G protein signaling pathway and a pathogenicity associated two-component system were activated in Foc4 rather than in Foc1. Together, these differences in gene content and transcription response between Foc1 and Foc4 might account for variation in their virulence during infection of the banana variety ‘Brazil’. Conclusions/Significance Foc genome sequences will facilitate us to identify pathogenicity mechanism involved in the banana vascular wilt disease development. These will thus advance us develop effective methods for managing the banana vascular wilt disease, including improvement of disease resistance in banana.


Nature Communications | 2015

Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Xiaodong Fang; Eviatar Nevo; Lijuan Han; Erez Y. Levanon; Jing Zhao; Aaron Avivi; Denis M. Larkin; Xuanting Jiang; Sergey Feranchuk; Yabing Zhu; Alla Fishman; Yue Feng; Noa Sher; Zhiqiang Xiong; Thomas Hankeln; Zhiyong Huang; Vera Gorbunova; Lu Zhang; Wei Zhao; Derek E. Wildman; Yingqi Xiong; Andrei V. Gudkov; Qiumei Zheng; Gideon Rechavi; Sanyang Liu; Lily Bazak; Jie Chen; Binyamin A. Knisbacher; Yao Lu; Imad Shams

Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax


Nature Communications | 2015

Erratum: Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Xiaodong Fang; Eviatar Nevo; Lijuan Han; Erez Y. Levanon; Jing Zhao; Aaron Avivi; Denis M. Larkin; Xuanting Jiang; Sergey Feranchuk; Yabing Zhu; Alla Fishman; Yue Feng; Noa Sher; Zhiqiang Xiong; Thomas Hankeln; Zhiyong Huang; Vera Gorbunova; Lu Zhang; Wei Zhao; Derek E. Wildman; Yingqi Xiong; Andrei V. Gudkov; Qiumei Zheng; Gideon Rechavi; Sanyang Liu; Lily Bazak; Jie Chen; Binyamin A. Knisbacher; Yao Lu; Imad Shams

Corrigendum: Genome-wide adaptive complexes to underground stresses in blind mole rats Spalax

Collaboration


Dive into the Yue Feng's collaboration.

Top Co-Authors

Avatar

Xiaodong Fang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Xuanting Jiang

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Yabing Zhu

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Zhiyong Huang

Beijing Institute of Genomics

View shared research outputs
Top Co-Authors

Avatar

Lijuan Han

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Zhiqiang Xiong

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Jun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Wei Zhao

Beijing Genomics Institute

View shared research outputs
Top Co-Authors

Avatar

Guojie Zhang

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Lu Zhang

Nanjing Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge