Yue Hang Tang
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yue Hang Tang.
Biochemical Journal | 2010
Siew Ping Han; Yue Hang Tang; Ross Smith
The hnRNPs (heterogeneous nuclear ribonucleoproteins) are RNA-binding proteins with important roles in multiple aspects of nucleic acid metabolism, including the packaging of nascent transcripts, alternative splicing and translational regulation. Although they share some general characteristics, they vary greatly in terms of their domain composition and functional properties. Although the traditional grouping of the hnRNPs as a collection of proteins provided a practical framework, which has guided much of the research on them, this approach is becoming increasingly incompatible with current knowledge about their structural and functional divergence. Hence, we review the current literature to examine hnRNP diversity, and discuss how this impacts upon approaches to the classification of RNA-binding proteins in general.
Nature Communications | 2014
Katia Nones; Nicola Waddell; Nicci Wayte; Ann-Marie Patch; Peter Bailey; Felicity Newell; Oliver Holmes; J. Lynn Fink; Michael Quinn; Yue Hang Tang; Guy Lampe; Kelly Quek; Kelly A. Loffler; Suzanne Manning; Senel Idrisoglu; David Miller; Qinying Xu; Nick Waddell; Peter Wilson; Timothy J. C. Bruxner; Angelika N. Christ; Ivon Harliwong; Craig Nourse; Ehsan Nourbakhsh; Matthew Anderson; Stephen Kazakoff; Conrad Leonard; Scott Wood; Peter T. Simpson; Lynne Reid
Oesophageal adenocarcinoma (EAC) incidence is rapidly increasing in Western countries. A better understanding of EAC underpins efforts to improve early detection and treatment outcomes. While large EAC exome sequencing efforts to date have found recurrent loss-of-function mutations, oncogenic driving events have been underrepresented. Here we use a combination of whole-genome sequencing (WGS) and single-nucleotide polymorphism-array profiling to show that genomic catastrophes are frequent in EAC, with almost a third (32%, n = 40/123) undergoing chromothriptic events. WGS of 22 EAC cases show that catastrophes may lead to oncogene amplification through chromothripsis-derived double-minute chromosome formation (MYC and MDM2) or breakage-fusion-bridge (KRAS, MDM2 and RFC3). Telomere shortening is more prominent in EACs bearing localized complex rearrangements. Mutational signature analysis also confirms that extreme genomic instability in EAC can be driven by somatic BRCA2 mutations. These findings suggest that genomic catastrophes have a significant role in the malignant transformation of EAC.
Nucleic Acids Research | 2010
Matthew J. Harrison; Yue Hang Tang; Dennis H. Dowhan
It is well established that transcription and alternative splicing events are functionally coupled during gene expression. Here, we report that protein arginine N-methyltransferase 6 (PRMT6) may play a key role in this coupling process by functioning as a transcriptional coactivator that can also regulate alternative splicing. PRMT6 coactivates the progesterone, glucocorticoid and oestrogen receptors in luciferase reporter assays in a hormone-dependent manner. In addition, small interfering RNA (siRNA) oligonucleotide duplex knockdown of PRMT6 disrupts oestrogen-stimulated transcription of endogenous GREB1 and progesterone receptor in MCF-7 breast cancer cells, demonstrating the importance of PRMT6 in hormone-dependent transcription. In contrast, the regulation of alternative splicing by PRMT6 is hormone independent. siRNA knockdown of PRMT6 increases the exon inclusion:skipping ratio of alternatively spliced exons in endogenous vascular endothelial growth factor and spleen tyrosine kinase RNA transcripts in both the presence and absence of oestrogen. These results demonstrate that PRMT6 has a dual role in regulating gene expression and that these two functions can occur independently of each other.
Pigment Cell & Melanoma Research | 2015
Varsha Tembe; Sarah-Jane Schramm; Mitchell S. Stark; Ellis Patrick; Vivek Jayaswal; Yue Hang Tang; Andrew P. Barbour; Nicholas K. Hayward; John F. Thompson; Richard A. Scolyer; Yee Hwa Yang; Graham J. Mann
The role of microRNAs (miRNAs) in melanoma is unclear. We examined global miRNA expression profiles in fresh‐frozen metastatic melanomas in relation to clinical outcome and BRAF mutation, with validation in independent cohorts of tumours and sera. We integrated miRNA and mRNA information from the same samples and elucidated networks associated with outcome and mutation. Associations with prognosis were replicated for miR‐150‐5p, miR‐142‐3p and miR‐142‐5p. Co‐analysis of miRNA and mRNA uncovered a network associated with poor prognosis (PP) that paradoxically favoured expression of miRNAs opposing tumorigenesis. These miRNAs are likely part of an autoregulatory response to oncogenic drivers, rather than drivers themselves. Robust association of miR‐150‐5p and the miR‐142 duplex with good prognosis and earlier stage metastatic melanoma supports their potential as biomarkers. miRNAs overexpressed in association with PP in an autoregulatory fashion will not be suitable therapeutic targets.
EBioMedicine | 2015
Mitchell S. Stark; Kerenaftali Klein; Benjamin Weide; Lauren E. Haydu; Annette Pflugfelder; Yue Hang Tang; Jane M. Palmer; David C. Whiteman; Richard A. Scolyer; Graham J. Mann; John F. Thompson; Andrew P. Barbour; H. Peter Soyer; Claus Garbe; Adrian C. Herington; Pamela M. Pollock; Nicholas K. Hayward
The overall 5-year survival for melanoma is 91%. However, if distant metastasis occurs (stage IV), cure rates are < 15%. Hence, melanoma detection in earlier stages (stages I–III) maximises the chances of patient survival. We measured the expression of a panel of 17 microRNAs (miRNAs) (MELmiR-17) in melanoma tissues (stage III; n = 76 and IV; n = 10) and serum samples (collected from controls with no melanoma, n = 130; and patients with melanoma (stages I/II, n = 86; III, n = 50; and IV, n = 119)) obtained from biobanks in Australia and Germany. In melanoma tissues, members of the ‘MELmiR-17’ panel were found to be predictors of stage, recurrence, and survival. Additionally, in a minimally-invasive blood test, a seven-miRNA panel (MELmiR-7) detected the presence of melanoma (relative to controls) with high sensitivity (93%) and specificity (≥ 82%) when ≥ 4 miRNAs were expressed. Moreover, the ‘MELmiR-7’ panel characterised overall survival of melanoma patients better than both serum LDH and S100B (delta log likelihood = 11, p < 0.001). This panel was found to be superior to currently used serological markers for melanoma progression, recurrence, and survival; and would be ideally suited to monitor tumour progression in patients diagnosed with early metastatic disease (stages IIIa–c/IV M1a–b) to detect relapse following surgical or adjuvant treatment.
European Journal of Cancer | 2014
Andrew P. Barbour; Yue Hang Tang; Nicola Armour; Ken Dutton-Regester; Lutz Krause; Kelly A. Loffler; Duncan Lambie; Bryan Burmeister; Janine Thomas; B. Mark Smithers; Nicholas K. Hayward
BACKGROUND 5-year survival for melanoma metastasis to regional lymph nodes (American Joint Committee on Cancer stage III) is <50%. Knowledge of outcomes following therapeutic lymphadenectomy for stage III melanoma related to BRAF status may guide adjuvant use of BRAF/MEK inhibitors along with established and future therapies. AIMS To determine patterns of melanoma recurrence and survival following therapeutic lymph node dissection (TLND) associated with oncogenic mutations. METHODS DNA was obtained from patients who underwent TLND and had ⩾2 positive nodes, largest node >3cm or extracapsular invasion. Mutations were detected using an extended Sequenom MelaCARTA panel. RESULTS Mutations were most commonly detected in BRAF (57/124 [46%] patients) and NRAS (26/124 [21%] patients). Patients with BRAF mutations had higher 3-year recurrence rate (77%) versus 54% for BRAF wild-type patients (hazard ratio (HR) 1.8, p=0.008). The only prognostically significant mutations occurred in BRAF: median recurrence-free (RFS) and disease-specific survival (DSS) for BRAF mutation patients was 7 months and 16 months, versus 19 months and not reached for BRAF wild-type patients, respectively. Multivariate analysis identified BRAF mutant status and number of positive lymph nodes as the only independent prognostic factors for RFS and DSS. CONCLUSIONS Patients with BRAF mutations experienced rapid progression of metastatic disease with locoregional recurrence rarely seen in isolation, supporting incorporation of BRAF status into melanoma staging and use of BRAF/MEK inhibitors post-TLND.
Carcinogenesis | 2016
Lutz Krause; Katia Nones; Kelly A. Loffler; Derek J. Nancarrow; Harald Oey; Yue Hang Tang; Nicola Wayte; Ann Marie Patch; Kalpana Patel; Sandra Brosda; Suzanne Manning; Guy Lampe; Andrew D. Clouston; Janine Thomas; Jens Stoye; Damian J. Hussey; David I. Watson; Reginald V. Lord; Wayne A. Phillips; D. C. Gotley; B. Mark Smithers; David C. Whiteman; Nicholas K. Hayward; Sean M. Grimmond; Nicola Waddell; Andrew P. Barbour
Summary This study describes the esophageal cancer methylation landscape and its impact on gene expression. Genes aberrantly methylated suggest a mechanism that could lead to genomic instability and chromothripsis. A CpG island methylator phenotype-like subtype with potentially worse clinical outcome was also identified.
Journal of Molecular Evolution | 2012
Yue Hang Tang; Siew Ping Han; Karin S. Kassahn; Adam Skarshewski; Joseph A. Rothnagel; Ross Smith
Alternative RNA splicing in multicellular organisms is regulated by a large group of proteins of mainly unknown origin. To predict the functions of these proteins, classification of their domains at the sequence and structural level is necessary. We have focused on four groups of splicing regulators, the heterogeneous nuclear ribonucleoprotein (hnRNP), serine–arginine (SR), embryonic lethal, abnormal vision (ELAV)-like, and CUG-BP and ETR-like factor (CELF) proteins, that show increasing diversity among metazoa. Sequence and phylogenetic analyses were used to obtain a broader understanding of their evolutionary relationships. Surprisingly, when we characterised sequence similarities across full-length sequences and conserved domains of ten metazoan species, we found some hnRNPs were more closely related to SR, ELAV-like and CELF proteins than to other hnRNPs. Phylogenetic analyses and the distribution of the RRM domains suggest that these proteins diversified before the last common ancestor of the metazoans studied here through domain acquisition and duplication to create genes of mixed evolutionary origin. We propose that these proteins were derived independently rather than through the expansion of a single protein family. Our results highlight inconsistencies in the current classification system for these regulators, which does not adequately reflect their evolutionary relationships, and suggests that a domain-based classification scheme may have more utility.
Institute of Health and Biomedical Innovation; Science & Engineering Faculty | 2015
Mitchell S. Stark; Kerenaftali Klein; Benjamin Weide; Lauren E. Haydu; Annette Pflugfelder; Yue Hang Tang; Jane M. Palmer; David C. Whiteman; Richard A. Scolyer; Graham J. Mann; John F. Thompson; Andrew P. Barbour; H. Peter Soyer; Claus Garbe; Adrian C. Herington; Pamela M. Pollock; Nicholas K. Hayward
Archive | 2013
Yue Hang Tang