Yue-Jiao Gong
South China University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yue-Jiao Gong.
ACM Computing Surveys | 2015
Zhi-Hui Zhan; Xiao Fang Liu; Yue-Jiao Gong; Jun Zhang; Henry Shu-Hung Chung; Yun Li
A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon.
IEEE Computational Intelligence Magazine | 2011
Jun Zhang; Zhi-Hui Zhan; Ying Lin; Ni Chen; Yue-Jiao Gong; Jinghui Zhong; Henry Shu-Hung Chung; Yun Li; Yuhui Shi
Evolutionary computation (EC) is a kind of optimization methodology inspired by the mechanisms of biological evolution and behaviors of living organisms. In the literature, the terminology evolutionary algorithms is frequently treated the same as EC. This article focuses on making a survey of researches based on using ML techniques to enhance EC algorithms. In the framework of an ML-technique enhanced-EC algorithm (MLEC), the main idea is that the EC algorithm has stored ample data about the search space, problem features, and population information during the iterative search process, thus the ML technique is helpful in analyzing these data for enhancing the search performance. The paper presents a survey of five categories: ML for population initialization, ML for fitness evaluation and selection, ML for population reproduction and variation, ML for algorithm adaptation, and ML for local search.
Applied Soft Computing | 2015
Yue-Jiao Gong; Wei-Neng Chen; Zhi-Hui Zhan; Jun Zhang; Yun Li; Qingfu Zhang; Jing-Jing Li
Graphical abstractDisplay Omitted HighlightsProvide an updated and systematic review of distributed evolutionary algorithms.Classify the models into population and dimension-distributed groups semantically.Analyze the parallelism, search behaviors, communication costs, scalability, etc.Highlight recent research hotspots in this field.Discuss challenges and potential research directions in this field. The increasing complexity of real-world optimization problems raises new challenges to evolutionary computation. Responding to these challenges, distributed evolutionary computation has received considerable attention over the past decade. This article provides a comprehensive survey of the state-of-the-art distributed evolutionary algorithms and models, which have been classified into two groups according to their task division mechanism. Population-distributed models are presented with master-slave, island, cellular, hierarchical, and pool architectures, which parallelize an evolution task at population, individual, or operation levels. Dimension-distributed models include coevolution and multi-agent models, which focus on dimension reduction. Insights into the models, such as synchronization, homogeneity, communication, topology, speedup, advantages and disadvantages are also presented and discussed. The study of these models helps guide future development of different and/or improved algorithms. Also highlighted are recent hotspots in this area, including the cloud and MapReduce-based implementations, GPU and CUDA-based implementations, distributed evolutionary multiobjective optimization, and real-world applications. Further, a number of future research directions have been discussed, with a conclusion that the development of distributed evolutionary computation will continue to flourish.
IEEE Transactions on Systems, Man, and Cybernetics | 2014
Wei-Jie Yu; Meie Shen; Wei-Neng Chen; Zhi-Hui Zhan; Yue-Jiao Gong; Ying Lin; Ou Liu; Jun Zhang
The performance of differential evolution (DE) largely depends on its mutation strategy and control parameters. In this paper, we propose an adaptive DE (ADE) algorithm with a new mutation strategy DE/lbest/1 and a two-level adaptive parameter control scheme. The DE/lbest/1 strategy is a variant of the greedy DE/best/1 strategy. However, the population is mutated under the guide of multiple locally best individuals in DE/lbest/1 instead of one globally best individual in DE/best/1. This strategy is beneficial to the balance between fast convergence and population diversity. The two-level adaptive parameter control scheme is implemented mainly in two steps. In the first step, the population-level parameters Fp and CRp for the whole population are adaptively controlled according to the optimization states, namely, the exploration state and the exploitation state in each generation. These optimization states are estimated by measuring the population distribution. Then, the individual-level parameters Fi and CRi for each individual are generated by adjusting the population-level parameters. The adjustment is based on considering the individuals fitness value and its distance from the globally best individual. This way, the parameters can be adapted to not only the overall state of the population but also the characteristics of different individuals. The performance of the proposed ADE is evaluated on a suite of benchmark functions. Experimental results show that ADE generally outperforms four state-of-the-art DE variants on different kinds of optimization problems. The effects of ADE components, parameter properties of ADE, search behavior of ADE, and parameter sensitivity of ADE are also studied. Finally, we investigate the capability of ADE for solving three real-world optimization problems.
IEEE Transactions on Industrial Informatics | 2012
Yue-Jiao Gong; Meie Shen; Jun Zhang; Okyay Kaynak; Wei-Neng Chen; Zhi-Hui Zhan
The rapid development of radio frequency identification (RFID) technology creates the challenge of optimal deployment of an RFID network. The RFID network planning (RNP) problem involves many constraints and objectives and has been proven to be NP-hard. The use of evolutionary computation (EC) and swarm intelligence (SI) for solving RNP has gained significant attention in the literature, but the algorithms proposed have seen difficulties in adjusting the number of readers deployed in the network. However, the number of deployed readers has an enormous impact on the network complexity and cost. In this paper, we develop a novel particle swarm optimization (PSO) algorithm with a tentative reader elimination (TRE) operator to deal with RNP. The TRE operator tentatively deletes readers during the search process of PSO and is able to recover the deleted readers after a few generations if the deletion lowers tag coverage. By using TRE, the proposed algorithm is capable of adaptively adjusting the number of readers used in order to improve the overall performance of RFID network. Moreover, a mutation operator is embedded into the algorithm to improve the success rate of TRE. In the experiment, six RNP benchmarks and a real-world RFID working scenario are tested and four algorithms are implemented and compared. Experimental results show that the proposed algorithm is capable of achieving higher coverage and using fewer readers than the other algorithms.
systems man and cybernetics | 2012
Yue-Jiao Gong; Jun Zhang; Ou Liu; Rui-Zhang Huang; Henry Shu-Hung Chung; Yuhui Shi
Vehicle routing problem with time windows (VRPTW) is a well-known NP-hard combinatorial optimization problem that is crucial for transportation and logistics systems. Even though the particle swarm optimization (PSO) algorithm is originally designed to solve continuous optimization problems, in this paper, we propose a set-based PSO to solve the discrete combinatorial optimization problem VRPTW (S-PSO-VRPTW). The general method of the S-PSO-VRPTW is to select an optimal subset out of the universal set by the use of the PSO framework. As the VRPTW can be defined as selecting an optimal subgraph out of the complete graph, the problem can be naturally solved by the proposed algorithm. The proposed S-PSO-VRPTW treats the discrete search space as an arc set of the complete graph that is defined by the nodes in the VRPTW and regards the candidate solution as a subset of arcs. Accordingly, the operators in the algorithm are defined on the set instead of the arithmetic operators in the original PSO algorithm. Besides, the process of position updating in the algorithm is constructive, during which the constraints of the VRPTW are considered and a time-oriented, nearest neighbor heuristic is used. A normalization method is introduced to handle the primary and secondary objectives of the VRPTW. The proposed S-PSO-VRPTW is tested on Solomons benchmarks. Simulation results and comparisons illustrate the effectiveness and efficiency of the algorithm.
IEEE Transactions on Industrial Electronics | 2014
Meie Shen; Zhi-Hui Zhan; Wei-Neng Chen; Yue-Jiao Gong; Jun Zhang; Yun Li
This paper proposes a novel bi-velocity discrete particle swarm optimization (BVDPSO) approach and extends its application to the nondeterministic polynomial (NP) complete multicast routing problem (MRP). The main contribution is the extension of particle swarm optimization (PSO) from the continuous domain to the binary or discrete domain. First, a novel bi-velocity strategy is developed to represent the possibilities of each dimension being 1 and 0. This strategy is suitable to describe the binary characteristic of the MRP, where 1 stands for a node being selected to construct the multicast tree, whereas 0 stands for being otherwise. Second, BVDPSO updates the velocity and position according to the learning mechanism of the original PSO in the continuous domain. This maintains the fast convergence speed and global search ability of the original PSO. Experiments are comprehensively conducted on all of the 58 instances with small, medium, and large scales in the Operation Research Library (OR-library). The results confirm that BVDPSO can obtain optimal or near-optimal solutions rapidly since it only needs to generate a few multicast trees. BVDPSO outperforms not only several state-of-the-art and recent heuristic algorithms for the MRP problems, but also algorithms based on genetic algorithms, ant colony optimization, and PSO.
IEEE Transactions on Systems, Man, and Cybernetics | 2016
Yue-Jiao Gong; Jing-Jing Li; Yicong Zhou; Yun Li; Henry Shu-Hung Chung; Yuhui Shi; Jun Zhang
Social learning in particle swarm optimization (PSO) helps collective efficiency, whereas individual reproduction in genetic algorithm (GA) facilitates global effectiveness. This observation recently leads to hybridizing PSO with GA for performance enhancement. However, existing work uses a mechanistic parallel superposition and research has shown that construction of superior exemplars in PSO is more effective. Hence, this paper first develops a new framework so as to organically hybridize PSO with another optimization technique for “learning.” This leads to a generalized “learning PSO” paradigm, the *L-PSO. The paradigm is composed of two cascading layers, the first for exemplar generation and the second for particle updates as per a normal PSO algorithm. Using genetic evolution to breed promising exemplars for PSO, a specific novel *L-PSO algorithm is proposed in the paper, termed genetic learning PSO (GL-PSO). In particular, genetic operators are used to generate exemplars from which particles learn and, in turn, historical search information of particles provides guidance to the evolution of the exemplars. By performing crossover, mutation, and selection on the historical information of particles, the constructed exemplars are not only well diversified, but also high qualified. Under such guidance, the global search ability and search efficiency of PSO are both enhanced. The proposed GL-PSO is tested on 42 benchmark functions widely adopted in the literature. Experimental results verify the effectiveness, efficiency, robustness, and scalability of the GL-PSO.
IEEE Transactions on Systems, Man, and Cybernetics | 2015
Ni Chen; Wei-Neng Chen; Yue-Jiao Gong; Zhi-Hui Zhan; Jun Zhang; Yun Li; Yu-Song Tan
Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problem-level and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed.
2013 IEEE Symposium on Swarm Intelligence (SIS) | 2013
Zhi-Hui Zhan; Wei-Neng Chen; Ying Lin; Yue-Jiao Gong; Yuan-Long Li; Jun Zhang
Human being is the most intelligent organism in the world and the brainstorming process popularly used by them has been demonstrated to be a significant and promising way to create great ideas for problem solving. Brain storm optimization (BSO) is a new kind of swarm intelligence algorithm inspired by human being creative problem solving process. BSO transplants the brainstorming process in human being into optimization algorithm design and gains successes. BSO generally uses the grouping, replacing, and creating operators to produce ideas as many as possible to approach the problem solution generation by generation. In these operators, BSO involves mainly three control parameters named: (1) p_replce to control the replacing operator; (2) p_one to control the creating operator to create new ideas between one cluster and two clusters; and (3) p_center (p_one_center and p_two_center) to control using cluster center or random idea to create new idea. In this paper, we make investigations on these parameters to see how they affect the performance of BSO. More importantly, a new BSO variant designed according to the investigation results is proposed and its performance is evaluated.