Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yue-Ming Wang is active.

Publication


Featured researches published by Yue-Ming Wang.


Expert Opinion on Drug Metabolism & Toxicology | 2012

Role of CAR and PXR in Xenobiotic Sensing and Metabolism

Yue-Ming Wang; Su Sien Ong; Sergio C. Chai; Taosheng Chen

Introduction: The xenobiotic detoxification system, which protects the human body from external chemicals, comprises drug-metabolizing enzymes and transporters whose expressions are regulated by pregnane X receptor (PXR) and the constitutive androstane receptor (CAR). The progress made in a large number of recent studies calls for a timely review to summarize and highlight these key discoveries. Areas covered: This review summarizes recent advances in elucidating the roles of PXR and CAR in the xenobiotic detoxification system. It also highlights the progress in understanding the regulation of PXR and CAR activity at the post-translational levels, as well as the structural basis for the regulation of these two xenobiotic sensors. Expert opinion: Future efforts are needed to discover novel agonists and antagonists with species and isoform selectivity, to systematically understand the regulation of PXR and CAR at multiple levels (transcriptional, post-transcriptional and post-translational levels) in response to xenobiotics exposure, and to solve the structures of the full-length receptors, which will be enabled by improved protein expression and purification techniques and approaches. In addition, more efforts will be needed to validate PXR and CAR as disease-related therapeutic targets and thus expand their roles as master xenobiotic sensors.


Oncogene | 2014

miR-137 regulates the constitutive androstane receptor and modulates doxorubicin sensitivity in parental and doxorubicin-resistant neuroblastoma cells

Apana Takwi; Yue-Ming Wang; Jing Wu; Martin Michaelis; Jindrich Cinatl; Taosheng Chen

Chemotherapy is the most common treatment for cancer. However, multidrug resistance (MDR) remains a major obstacle to effective chemotherapy, limiting the efficacy of both conventional chemotherapeutic and novel biologic agents. The constitutive androstane receptor (CAR), a xenosensor, is a key regulator of MDR. It functions in xenobiotic detoxification by regulating the expression of phase I drug-metabolizing enzymes and ATP-binding cassette (ABC) transporters, whose overexpression in cancers and whose role in drug resistance make them potential therapeutic targets for reducing MDR. MicroRNAs (miRNAs) are endogenous negative regulators of gene expression and have been implicated in most cellular processes, including drug resistance. Here, we report the inversely related expression of miR-137 and CAR in parental and doxorubicin-resistant neuroblastoma cells, wherein miR-137 is downregulated in resistant cells. miR-137 overexpression resulted in downregulation of CAR protein and mRNA (via mRNA degradation); it sensitized doxorubicin-resistant cells to doxorubicin (as shown by reduced proliferation, increased apoptosis and increased G2-phase cell cycle arrest) and reduced the in vivo growth rate of neuroblastoma xenografts. We observed similar results in cellular models of hepatocellular and colon cancers, indicating that the doxorubicin-sensitizing effect of miR-137 is not tumor type-specific. Finally, we show for the first time a negative feedback loop whereby miR-137 downregulates CAR expression and CAR downregulates miR-137 expression. Hypermethylation of the miR-137 promoter and negative regulation of miR-137 by CAR contribute in part to reduced miR-137 expression and increased CAR and MDR1 expression in doxorubicin-resistant neuroblastoma cells. These findings demonstrate that miR-137 is a crucial regulator of cancer response to doxorubicin treatment, and they identify miR-137 as a highly promising target to reduce CAR-driven doxorubicin resistance.


Toxicology and Applied Pharmacology | 2013

Piperine activates human pregnane X receptor to induce the expression of cytochrome P450 3A4 and multidrug resistance protein 1

Yue-Ming Wang; Wenwei Lin; Sergio C. Chai; Jing Wu; Su Sien Ong; Erin G. Schuetz; Taosheng Chen

Activation of the pregnane X receptor (PXR) and subsequently its target genes, including those encoding drug transporters and metabolizing enzymes, while playing substantial roles in xenobiotic detoxification, might cause undesired drug-drug interactions. Recently, an increased awareness has been given to dietary components for potential induction of diet-drug interactions through activation of PXR. Here, we studied, whether piperine (PIP), a major component extracted from the widely-used daily spice black pepper, could induce PXR-mediated expression of cytochrome P450 3A4 (CYP3A4) and multidrug resistance protein 1 (MDR1). Our results showed that PIP activated human PXR (hPXR)-mediated CYP3A4 and MDR1 expression in human hepatocytes, intestine cells, and a mouse model; PIP activated hPXR by recruiting its coactivator SRC-1 in both cellular and cell-free systems; PIP bound to the hPXR ligand binding domain in a competitive ligand binding assay in vitro. The dichotomous effects of PIP on induction of CYP3A4 and MDR1 expression observed here and inhibition of their activity reported elsewhere challenges the potential use of PIP as a bioavailability enhancer and suggests that caution should be taken in PIP consumption during drug treatment in patients, particularly those who favor daily pepper spice or rely on certain pepper remedies.


Expert Opinion on Drug Metabolism & Toxicology | 2014

Pregnane X receptor and drug-induced liver injury

Yue-Ming Wang; Sergio C. Chai; Christopher T Brewer; Taosheng Chen

Introduction: The liver plays a central role in transforming and clearing foreign substances. The continuous exposure of the liver to xenobiotics sometimes leads to impaired liver function, referred to as drug-induced liver injury (DILI). The pregnane X receptor (PXR) tightly regulates the expression of genes in the hepatic drug-clearance system and its undesired activation plays a role in DILI. Areas covered: This review focuses on the recent progress in understanding PXR-mediated DILI and highlights the efforts made to assess and manage PXR-mediated DILI during drug development. Expert opinion: Future efforts are needed to further elucidate the mechanisms of PXR-mediated liver injury, including the epigenetic regulation and polymorphisms of PXR. Novel in vitro models containing functional PXR could improve our ability to predict and assess DILI during drug development. PXR inhibitors may provide chemical tools to validate the potential of PXR as a therapeutic target and to develop drugs to be used in the clinic to manage PXR-mediated DILI.


Biochimica et Biophysica Acta | 2016

Small-molecule modulators of PXR and CAR

Sergio C. Chai; Milu T. Cherian; Yue-Ming Wang; Taosheng Chen

Two nuclear receptors, the pregnane X receptor (PXR) and the constitutive androstane receptor (CAR), participate in the xenobiotic detoxification system by regulating the expression of drug-metabolizing enzymes and transporters in order to degrade and excrete foreign chemicals or endogenous metabolites. This review aims to expand the perceived relevance of PXR and CAR beyond their established role as master xenosensors to disease-oriented areas, emphasizing their modulation by small molecules. Structural studies of these receptors have provided much-needed insight into the nature of their binding promiscuity and the important elements that lead to ligand binding. Reports of species- and isoform-selective activation highlight the need for further scrutiny when extrapolating from animal data to humans, as animal models are at the forefront of early drug discovery. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.


Biochemical Pharmacology | 2015

Serine 350 of human pregnane X receptor is crucial for its heterodimerization with retinoid X receptor alpha and transactivation of target genes in vitro and in vivo.

Yue-Ming Wang; Sergio C. Chai; Wenwei Lin; Xiaojuan Chai; Ayesha Elias; Jing Wu; Su Sien Ong; Satyanarayana R. Pondugula; Jordan A. Beard; Erin G. Schuetz; Su Zeng; Wen Xie; Taosheng Chen

The human pregnane X receptor (hPXR), a member of the nuclear receptor superfamily, senses xenobiotics and controls the transcription of genes encoding drug-metabolizing enzymes and transporters. The regulation of hPXRs transcriptional activation of its target genes is important for xenobiotic detoxification and endobiotic metabolism, and hPXR dysregulation can cause various adverse drug effects. Studies have implicated the putative phosphorylation site serine 350 (Ser(350)) in regulating hPXR transcriptional activity, but the mechanism of regulation remains elusive. Here we investigated the transactivation of hPXR target genes in vitro and in vivo by hPXR with a phosphomimetic mutation at Ser(350) (hPXR(S350D)). The S350D phosphomimetic mutation reduced the endogenous expression of cytochrome P450 3A4 (an hPXR target gene) in HepG2 and LS180 cells. Biochemical assays and structural modeling revealed that Ser(350) of hPXR is crucial for formation of the hPXR-retinoid X receptor alpha (RXRα) heterodimer. The S350D mutation abrogated heterodimerization in a ligand-independent manner, impairing hPXR-mediated transactivation. Further, in a novel humanized transgenic mouse model expressing the hPXR(S350D) transgene, we demonstrated that the S350D mutation alone is sufficient to impair hPXR transcriptional activity in mouse liver. This transgenic mouse model provides a unique tool to investigate the regulation and function of hPXR, including its non-genomic function, in vivo. Our finding that phosphorylation regulates hPXR activity has implications for development of novel hPXR antagonists and for safety evaluation during drug development.


Nature Communications | 2017

SPA70 is a potent antagonist of human pregnane X receptor

Wenwei Lin; Yue-Ming Wang; Sergio C. Chai; Lili Lv; Jie Zheng; Jing Wu; Qijun Zhang; Yong-Dong Wang; Patrick R. Griffin; Taosheng Chen

Many drugs bind to and activate human pregnane X receptor (hPXR) to upregulate drug-metabolizing enzymes, resulting in decreased drug efficacy and increased resistance. This suggests that hPXR antagonists have therapeutic value. Here we report that SPA70 is a potent and selective hPXR antagonist. SPA70 inhibits hPXR in human hepatocytes and humanized mouse models and enhances the chemosensitivity of cancer cells, consistent with the role of hPXR in drug resistance. Unexpectedly, SJB7, a close analog of SPA70, is an hPXR agonist. X-ray crystallography reveals that SJB7 resides in the ligand-binding domain (LBD) of hPXR, interacting with the AF-2 helix to stabilize the LBD for coactivator binding. Differential hydrogen/deuterium exchange analysis demonstrates that SPA70 and SJB7 interact with the hPXR LBD. Docking studies suggest that the lack of the para-methoxy group in SPA70 compromises its interaction with the AF-2, thus explaining its antagonism. SPA70 is an hPXR antagonist and promising therapeutic tool.The xenobiotic-activated human pregnane X receptor (hPXR) regulates drug metabolism. Here the authors develop hPXR modulators, which are of potential therapeutic interest and functionally and structurally characterize the antagonist SPA70 and the structurally related agonist SJB7.


Scientific Reports | 2017

Transcription factor ZNF148 is a negative regulator of human muscle differentiation

Jesse Bakke; William C. Wright; Anthony E. Zamora; Su Sien Ong; Yue-Ming Wang; Jessica D. Hoyer; Christopher T. Brewer; Paul G. Thomas; Taosheng Chen

Muscle differentiation is a complex process in which muscle progenitor cells undergo determination and eventually cellular fusion. This process is heavily regulated by such master transcription factors as MYOD and members of the MEF2 family. Here, we show that the transcription factor ZNF148 plays a direct role in human muscle cell differentiation. Downregulation of ZNF148 drives the formation of a muscle phenotype with rapid expression of myosin heavy chain, even in proliferative conditions. This phenotype was most likely mediated by the robust and swift upregulation of MYOD and MEF2C.


PLOS ONE | 2016

Regulation of Nuclear Receptor Nur77 by miR-124

Alexa Tenga; Jordan A. Beard; Apana A. Takwi; Yue-Ming Wang; Taosheng Chen

The nuclear receptor Nur77 is commonly upregulated in adult cancers and has oncogenic functions. Nur77 is an immediate-early response gene that acts as a transcription factor to promote proliferation and protect cells from apoptosis. Conversely, Nur77 can translocate to the mitochondria and induce apoptosis upon treatment with various cytotoxic agents. Because Nur77 is upregulated in cancer and may have a role in cancer progression, it is of interest to understand the mechanism controlling its expression. MicroRNAs (miRNAs) are responsible for inhibiting translation of their target genes by binding to the 3ʹUTR and either degrading the mRNA or preventing it from being translated into protein, thereby making these non-coding endogenous RNAs vital regulators of every cellular process. Several miRNAs have been predicted to target Nur77; however, strong evidence showing the regulation of Nur77 by any miRNA is lacking. In this study, we used a luciferase reporter assay containing the 3ʹUTR of Nur77 to screen 296 miRNAs and found that miR-124, which is the most abundant miRNA in the brain and has a role in promoting neuronal differentiation, caused the greatest reduction in luciferase activity. Interestingly, we discovered an inverse relationship in Daoy medulloblastoma cells and undifferentiated granule neuron precursors in which Nur77 is upregulated and miR-124 is downregulated. Exogenous expression to further elevate Nur77 levels in Daoy cells increased proliferation and viability, but knocking down Nur77 via siRNA resulted in the opposite phenotype. Importantly, exogenous expression of miR-124 reduced Nur77 expression, cell viability, proliferation, and tumor spheroid size in 3D culture. In all, we have discovered miR-124 to be downregulated in instances of medulloblastoma in which Nur77 is upregulated, resulting in a proliferative state that abets cancer progression. This study provides evidence for increasing miR-124 expression as a potential therapy for cancers with elevated levels of Nur77.


Current Drug Metabolism | 2017

Differential Regulation of CYP3A4 and CYP3A5 and its Implication in Drug Discovery

Ogheneochukome Lolodi; Yue-Ming Wang; William C. Wright; Taosheng Chen

BACKGROUND Cancer cells use several mechanisms to resist the cytotoxic effects of drugs, resulting in tumor progression and invasion. One such mechanism capitalizes on the bodys natural defense against xenobiotics by increasing the rate of xenobiotic efflux and metabolic inactivation. Xenobiotic metabolism typically involves conversion of parent molecules to more soluble and easily excreted derivatives in reactions catalyzed by Phase I and Phase II drug metabolizing enzymes. METHODS We performed a structured search of peer-reviewed literature on P450 (CYP) 3A, with a focus on CYP3A4 and CYP3A5. RESULTS Recent reports indicate that components of the xenobiotic response system are upregulated in some diseases, including many cancers. Such components include the pregnane X receptor (PXR), CYP3A4 and CYP3A5 enzymes. The CYP3A enzymes are a subset of the numerous enzymes that are transcriptionally activated following the interaction of PXR and many ligands. CONCLUSION Intense research is ongoing to understand the functional ramifications of aberrant expression of these components in diseased states with the goal of designing novel drugs that can selectively target them.

Collaboration


Dive into the Yue-Ming Wang's collaboration.

Top Co-Authors

Avatar

Taosheng Chen

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Sergio C. Chai

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Su Sien Ong

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jing Wu

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Wenwei Lin

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Erin G. Schuetz

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Jordan A. Beard

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

William C. Wright

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Alexa Tenga

University of Tennessee Health Science Center

View shared research outputs
Top Co-Authors

Avatar

Anthony E. Zamora

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge