Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuedong Ma is active.

Publication


Featured researches published by Yuedong Ma.


Clinical and Experimental Pharmacology and Physiology | 2011

Metformin attenuates ventricular hypertrophy by activating the AMP‐activated protein kinase–endothelial nitric oxide synthase pathway in rats

Chengxi Zhang; Si-Nian Pan; Rongsen Meng; Chao-Quan Peng; Zhaojun Xiong; Baolin Chen; Guangqin Chen; Fengjuan Yao; Yili Chen; Yuedong Ma; Yu-Gang Dong

1. Metformin is an activator of AMP‐activated protein kinase (AMPK). Recent studies suggest that pharmacological activation of AMPK inhibits cardiac hypertrophy. In the present study, we examined whether long‐term treatment with metformin could attenuate ventricular hypertrophy in a rat model. The potential involvement of nitric oxide (NO) in the effects of metformin was also investigated.


Acta Pharmacologica Sinica | 2010

Activation of AMPK inhibits cardiomyocyte hypertrophy by modulating of the FOXO1/MuRF1 signaling pathway in vitro

Baolin Chen; Yuedong Ma; Rongsen Meng; Zhaojun Xiong; Hai-ning Wang; Junyi Zeng; Chen Liu; Yugang Dong

AbstractAim:To examine the inhibitory effects of adenosine monophosphate-activated protein kinase (AMPK) activation on cardiac hypertrophy in vitro and to investigate the underlying molecular mechanisms.Methods:Cultured neonatal rat cardiomyocytes were treated with the specific AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and the specific AMPK antagonist Compound C, and then stimulated with phenylephrine (PE). The Muscle RING finger 1 (MuRF1)-small interfering RNA (siRNA) was transfected into cardiomyocytes using Lipofectamine 2000. The surface area of cultured cardiomyocytes was measured using planimetry. The protein degradation was determined using high performance liquid chromatography (HPLC). The expression of β-myosin heavy chain (β-MHC) and MuRF1, as well as the phosphorylation levels of AMPK and Forkhead box O 1 (FOXO1), were separately measured using Western blot or real-time polymerase chain reaction.Results:Activation of AMPK by AICAR 0.5 mmol/L inhibited PE-induced increase in cardiomyocyte area and β-MHC protein expression and PE-induced decrease in protein degradation. Furthermore, AMPK activation increased the activity of transcription factor FOXO1 and up-regulated downstream atrogene MuRF1 mRNA and protein expression. Treatment of hypertrophied cardiomyocytes with Compound C 1 μmol/L blunted the effects of AMPK on cardiomyocyte hypertrophy and changes to the FOXO1/MuRF1 pathway. The effects of AICAR on cardiomyocyte hypertrophy were also blocked after MuRF1 was silenced by transfection of cardiomyocytes with MuRF1-siRNA.Conclusion:The present study demonstrates that AMPK activation attenuates cardiomyocyte hypertrophy by modulating the atrophy-related FOXO1/MuRF1 signaling pathway in vitro.


Biochemical Pharmacology | 2011

MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-κB/TGFβ1 pathway

Yuedong Ma; Baolin Chen; Dan Liu; Yang Yang; Zhaojun Xiong; Junyi Zeng; Yugang Dong

Although MG132, a proteasome inhibitor, is suggested to impede secondary cardiac remodeling after hypertension, the mechanism and optimal duration of treatment remain unknown. This study was designed to investigate the effects and possible mechanism of MG132 on hypertension-induced cardiac remodeling. Male Sprague-Dawley rats subjected to abdominal aortic constriction (AAC) or sham operation received an intraperitoneal injection of MG132 (0.1mgkg(-1)day(-1)) or vehicle over a 2- or 8-week period. In the end, left ventricular (LV) function was evaluated with echocardiography and pressure tracing. Collagen deposition within the LV myocardium was assessed with Massons trichrome staining. Ubiquitin-proteasome system (UPS), NF-κB, I-κB, TGFβ1 and Smad2 within the LV tissue were evaluated. In addition, angiotensin II within both plasma and LV tissue was also examined. Compared with the sham groups, the vehicle-treated AAC group exhibited a higher angiotensin II level, LV/body weight ratio, septal and posterior wall thicknesses, and a markedly reduced cardiac function (P<0.05). Treatment with MG132 for 8 weeks attenuated these cardiac remodeling parameters and improved cardiac function (P<0.01). 2- and 8-week hypertension led to activation of UPS, which was followed by activation of NF-κB and increased expression of TGFβ1 and Smad2 (P<0.01). MG132 significantly inhibited NF-κB activity and down-regulate the levels of TGFβ1 and Smad2 expression by 2 and still at 8 weeks (P<0.01). Short- and long-term treatment with MG132 significantly attenuated hypertension-induced cardiac remodeling and dysfunction, which may be mediated by the NF-κB/TGFβ1 signaling pathway.


Biochemical Pharmacology | 2013

Proteasome inhibition attenuates heart failure during the late stages of pressure overload through alterations in collagen expression.

Yuedong Ma; Yili Chen; Yang Yang; Baolin Chen; Dan Liu; Zhaojun Xiong; Chengxi Zhang; Yugang Dong

Although the role of the ubiquitin-proteasome system (UPS) in cardiac hypertrophy induced by pressure overload has been consistently studied, the fundamental importance of the UPS in cardiac fibrosis has received much less attention. Our previous study found that proteasome inhibitor (MG132) treatment attenuated cardiac fibrosis and heart failure during the early and middle stages of pressure overload. However, the effects of this inhibitor on late-stage pressure overload hearts remain unclear and controversial. The present study was designed to investigate the effects and possible mechanisms of MG132 on cardiac fibrosis and dysfunction during the late stages of pressure overload. Male Sprague Dawley rats with abdominal aortic constriction (AAC) or a sham operation received an intraperitoneal injection of MG132 (0.1 mg kg⁻¹ day⁻¹) or vehicle for 16 weeks. Left ventricular (LV) function, collagen deposition and Ang II levels were evaluated at study termination. Ang II-stimulated adult rat cardiac fibroblasts were utilized to examine the effects of MG132 on collagen synthesis and the relationship between the renin-angiotensin-aldosterone system (RAAS) and the UPS. MG132 treatment attenuated ventricular dysfunction by suppressing cardiac fibrosis rather than inhibiting cardiac hypertrophy during the late-stages of pressure overload. We also found that Ang II activates UPS in the heart and MG132 attenuates Ang II-induced collagen synthesis via suppression of the NF-κB/TGF-β/Smad2 signaling pathways. Proteasome inhibition therefore could provide a new promising therapeutic strategy to prevent cardiac fibrosis and progression of heart failure even during the late-stages of pressure overload.


Disease Markers | 2012

Oxidized low-density lipoprotein cholesterol and the ratio in the diagnosis and evaluation of therapeutic effect in patients with coronary artery disease

Huiling Huang; R. Ma; Dan Liu; Chen Liu; Yuedong Ma; Weiyi Mai; Yugang Dong

Objective: The purpose of the present study was to investigate the value of ox-LDL and oxidation ratio of LDL (ox-LDL/TC, ox-LDL/HDL-C and ox-LDL/LDL-C) in diagnosis and prognosis evaluation in CAD patients. Also, we aimed to observe the effect of statins on reducing level of ox-LDL and oxidation ratio of LDL, and explore whether statins still have similar effect on ox-LDL in a short period of therapy (within 2 weeks). Methods: Blood ox-LDL, TC, HDL-C, LDL-C, and TG were measured in cases with acute myocardial infarction (AMI, n = 177), unstable angina pectoris (UAP, n = 195), stable angina pectoris (SAP, n = 228), normal control (n = 120), and high risk control (n = 140). Results: Mean value of ox-LDL and oxidation ratio of LDL was significantly higher in the CAD group than in the two control groups. The AUC of ROC curve of ox-LDL, ox-LDL/TC, ox-LDL/HDL-C, ox-LDL/LDL-C and apoA1/apoB were more than 0.50 (P < 0.001). Multivariate logistic regression analysis showed that age and ox-LDL/LDL-C related with short-term, while ox-LDL/LDL-C and ox-LDL/TC related with long-term prognosis (P < 0.05). Furthermore, after treatment with statins for 2 weeks, TC, LDL-C, ox-LDL, ox-LDL/TC, ox-LDL/HDL-C and ox-LDL/LDL-C decreased by 22%, 28%, 38%, 29%, 23% and 25% respectively. And the reduction of ox-LDL by statins is independent of lowering of LDL-C and TC. Conclusions: Ox-LDL and oxidation ratio of LDL are closely related with AS, and they are better biomarkers for discriminating between patients with coronary artery disease and healthy subjects. In addition, statins can decrease level of ox-LDL significantly, which is independent of lowering of LDL-C and TC.


European Journal of Pharmacology | 2010

Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling

Zhaojun Xiong; Gang Sun; Cansheng Zhu; Baolin Cheng; Chengxi Zhang; Yuedong Ma; Yugang Dong

The nuclear factor (NF)-κB signaling pathway is an important intracellular mediator of cardiac hypertrophy. Recent studies have indicated that the anti-malarial agent artemisinin has the ability to inhibit NF-κB activation. We hypothesized that artemisinin would suppress cardiac hypertrophy by inhibiting NF-κB signal pathways. We tested this hypothesis using primary cultured rat cardiac myocytes and well-established rat models of cardiac hypertrophy. Artemisinin blocked angiotensin II-induced cardiac hypertrophy in vitro in a concentration-dependent manner. Furthermore, artemisinin protected against rat cardiac hypertrophy induced by transaortic constriction (TAC), as assessed by heart weight/body weight and lung weight/body weight ratios, echocardiographic parameters, and gene expression of hypertrophic markers. Electrophoretic mobility shift assays revealed increased NF-κB binding activity in cardiac nuclear extracts of banded rats that was prevented by artemisinin treatment. Banded rats treated with oral artemisinin, compared with untreated rats, showed significantly decreased the levels of IL-6, TNF-α and MCP-1 mRNA expression and increased protein levels of IκB-α, which forms a cytoplasmic inactive complex with the p65-p50 heterodimeric complex. The effect of artemisinin on cardiac hypertrophy was blocked after IκB-α was silenced by transfection of cardiomyocytes with IκB-α siRNA. Our results indicate that artemisinin inhibits cardiomyocyte growth by interfering with NF-κB signaling.


Biochemical Pharmacology | 2014

Proapoptotic PEDF functional peptides inhibit prostate tumor growth—A mechanistic study

Qing Gong; Shaopeng Qiu; Shuai Li; Yuedong Ma; Mingyuan Chen; Yachao Yao; Di Che; Juan Feng; Weibin Cai; Jian Xing Ma; Xia Yang; Guoquan Gao; Zhonghan Yang

PEDF inhibits tumor growth via anti-angiogenic activity; however, the direct effect of PEDF on prostate carcinoma and its functional epitope as well as the underlying mechanism regulating the pathway from extracellular receptors to nuclear transcription factors has not been fully elucidated. This study investigates the ability and mechanism by which the functional PEDF peptides PEDF34 and PEDF44 suppress tumor growth. The results showed that death receptor pathway was activated by PEDF34 through up-regulation of FasL and activation of caspase-8 in both xenograft tumor tissues and PC-3 cells. FasL knockdown by siRNA or JNK-p inhibition attenuated apoptosis induced by PEDF34. NF-κB and PPARγ are crucial transcription factors for FasL expression. PEDF34 up-regulated PPARγ but did not affect NF-κB. PEDF34-induced up-regulation of FasL was abolished by siRNA-mediated PPARγ knockdown or using PPARγ inhibitor GW9662, whereas inhibition of NF-κB by the inhibitor PDTC or by siRNA had no effect. Furthermore, activation of JNK is necessary for PEDF34-induced up-regulation of FasL. PEDF34 has stronger hydropathicity and more interactions with laminin receptor than PEDF44. Blocking the laminin receptor abolished the up-regulation of FasL and PPARγ by PEDF34. Moreover, PEDF34 uses a similar mechanism to induce apoptosis in both endothelial and cancer cells. This study provides evidence that PEDF34, not PEDF44, serves as the proapoptotic epitope and exerts proapoptotic activity in both cancer and endothelial cells through activation of the extrinsic death receptor pathway. The dual anti-tumor and anti-angiogenic activities of PEDF34 suggest that it may be a promising agent for the treatment of prostate cancer.


European Journal of Pharmacology | 2017

AMPK attenuates ventricular remodeling and dysfunction following aortic banding in mice via the Sirt3/Oxidative stress pathway

Yili Chen; Cong Chen; Bin Dong; Fuwei Xing; Huiling Huang; Fengjuan Yao; Yuedong Ma; Jiangui He; Yugang Dong

ABSTRACT Although recent findings have suggested that AMP‐activated protein kinase (AMPK) exerts inhibitory effects on cardiac remodeling secondary to hypertension, the mechanism and optimal duration of treatment remain unknown. Mice with descending aortic banding (AB) or subjected to sham operation received subcutaneous injection of either AICAR (0.5 mg g‐1 day‐1) or vehicle over 4 week periods. At the end of 4 week treatment, left ventricular (LV) remodeling and function were evaluated with histological analysis and echocardiography. Collagen deposition within the LV myocardium was detected with Massons trichrome staining. Collagen I, Collagen III, Smad 2, Smad 3, NOX2, NOX4 and Sirt3 (an important antioxidant factor) within the LV tissue were also evaluated. Compared with the sham group, the vehicle‐treated AB group exhibited significant elevations in cardiac remodeling and heart failure, characterized by an increase in LV weight relative to body weight, an increase in the area of collagen deposition, an increase in LV end‐diastolic diameter, an increase in mitral E inflow velocity to mitral A inflow velocity and increases in the gene expressions of the fibrosis markers Collagen I, III and Smad 2, 3 mRNA and decreases in EF and fractional shortening. AMPK attenuate the cardiac remodeling parameters and improve cardiac function. Moreover, the expressions of NOX2, NOX4 were significantly elevated in vehicle‐treated AB group. AMPK was able to significantly inhibit NOX2, NOX4 expression, while activate Sirt3 expression. AMPK significantly attenuated hypertension‐induced Ventricular remodeling and dysfunction, which may be mediated by the Sirt3/Oxidative stress signaling pathway.


Archives of Biochemistry and Biophysics | 2015

AVE 3085, a novel endothelial nitric oxide synthase enhancer, attenuates cardiac remodeling in mice through the Smad signaling pathway.

Yili Chen; Cong Chen; Cong Feng; Anli Tang; Yuedong Ma; Xin He; Yanhui Li; Jiangui He; Yugang Dong

AVE 3085 is a novel endothelial nitric oxide synthase enhancer. Although AVE 3085 treatment has been shown to be effective in spontaneously restoring endothelial function in hypertensive rats, little is known about the effects and mechanisms of AVE 3085 with respect to cardiac remodeling. The present study was designed to examine the effects of AVE 3085 on cardiac remodeling and the mechanisms underlying the effects of this compound. Mice were subjected to aortic banding to induce cardiac remodeling and were then administered AVE 3085 (10 mg kg day(-1), orally) for 4 weeks. At the end of the treatment, the aortic banding-treated mice exhibited significant elevations in cardiac remodeling, characterized by an increase in left ventricular weight relative to body weight, an increase in the area of collagen deposition, an increase in the mean myocyte diameter, and increases in the gene expressions of the hypertrophic markers atrial natriuretic peptide (ANP) and β-MHC. These indexes were significantly decreased in the AVE 3085-treated mice. Furthermore, AVE 3085 treatment reduced the expression and activation of the Smad signaling pathway in the aortic banding-treated mice. Our data showed that AVE 3085 attenuated cardiac remodeling, and this effect was possibly mediated through the inhibition of Smad signaling.


Acta Biochimica et Biophysica Sinica | 2016

Adenosine monophosphate-activated protein kinase attenuates cardiomyocyte hypertrophy through regulation of FOXO3a/MAFbx signaling pathway

Baolin Chen; Qiang Wu; Zhaojun Xiong; Yuedong Ma; Sha Yu; Dandan Chen; Shengwen Huang; Yugang Dong

Control of cardiac muscle mass is thought to be determined by a dynamic balance of protein synthesis and degradation. Recent studies have demonstrated that atrophy-related forkhead box O 3a (FOXO3a)/muscle atrophy F-box (MAFbx) signaling pathway plays a central role in the modulation of proteolysis and exert inhibitory effect on cardiomyocyte hypertrophy. In this study, we tested the hypothesis that adenosine monophosphate-activated protein kinase (AMPK) activation attenuates cardiomyocyte hypertrophy by regulating FOXO3a/MAFbx signaling pathway and its downstream protein degradation. The results showed that activation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) attenuated cardiomyocyte hypertrophy induced by angiotensin II (Ang II). The antihypertrophic effects of AICAR were blunted by AMPK inhibitor Compound C. In addition, AMPK dramatically increased the activity of transcription factor FOXO3a, up-regulated the expression of its downstream ubiquitin ligase MAFbx, and enhanced cardiomyocyte proteolysis. Meanwhile, the effects of AMPK on protein degradation and cardiomyocyte hypertrophy were blocked after MAFbx was silenced by transfection of cardiomyocytes with MAFbx-siRNA. These results indicate that AMPK plays an important role in the inhibition of cardiomyocyte hypertrophy by activating protein degradation via FOXO3a/MAFbx signaling pathway.

Collaboration


Dive into the Yuedong Ma's collaboration.

Top Co-Authors

Avatar

Yugang Dong

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Baolin Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Yili Chen

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Chen Liu

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jiangui He

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Anli Tang

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

Dan Liu

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge