Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuehui He is active.

Publication


Featured researches published by Yuehui He.


Plant Physiology | 2002

Evidence supporting a role of jasmonic acid in Arabidopsis leaf senescence

Yuehui He; Hirotada Fukushige; David F. Hildebrand; Susheng Gan

In this work, the role of jasmonic acid (JA) in leaf senescence is examined. Exogenous application of JA caused premature senescence in attached and detached leaves in wild-type Arabidopsis but failed to induce precocious senescence of JA-insensitive mutantcoi1 plants, suggesting that the JA-signaling pathway is required for JA to promote leaf senescence. JA levels in senescing leaves are 4-fold higher than in non-senescing ones. Concurrent with the increase in JA level in senescing leaves, genes encoding the enzymes that catalyze most of the reactions of the JA biosynthetic pathway are differentially activated during leaf senescence in Arabidopsis, except for allene oxide synthase, which is constitutively and highly expressed throughout leaf development. Arabidopsis lipoxygenase 1 (cytoplasmic) expression is greatly increased but lipoxygenase 2 (plastidial) expression is sharply reduced during leaf senescence. Similarly,AOC1 (allene oxide cyclase 1),AOC2, and AOC3 are all up-regulated, whereas AOC4 is down-regulated with the progression of leaf senescence. The transcript levels of 12-oxo-PDA reductase 1 and 12-oxo-PDA reductase 3 also increase in senescing leaves, as does PED1 (encoding a 3-keto-acyl-thiolase for β-oxidation). This represents the first report, to our knowledge, of an increase in JA levels and expression of oxylipin genes during leaf senescence, and indicates that JA may play a role in the senescence program.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis

Scott D. Michaels; Yuehui He; Katia C. Scortecci; Richard M. Amasino

Plant species have evolved a wide variety of flowering habits, each adapted to maximize reproductive success in their local environment. Even within a species, accessions from different environments can exhibit markedly different flowering behavior. In Arabidopsis, some accessions are rapid-cycling summer annuals, whereas others accessions are late flowering and vernalization responsive and thus behave as winter annuals. Two genes, FLOWERING LOCUS C (FLC) and FRIGIDA (FRI), interact synergistically to confer the winter-annual habit. Previous work has shown that many summer-annual accessions contain null mutations in the FRI gene; thus it appears that these summer-annual accessions have arisen from winter-annual ancestors by losing FRI function. In this work we demonstrate that naturally occurring allelic variation in FLC has provided another route to the evolution of summer-annual flowering behavior in Arabidopsis. We have identified two summer-annual accessions, Da (1)-12 and Shakhdara, that contain functional alleles of FRI, but are early flowering because of weak alleles of FLC. We have also determined that the weak allele of FLC found in Landsberg erecta is naturally occurring. Unlike accessions that have arisen because of loss-of-function mutations in FRI, the FLC alleles from Da (1)-12, Shakhdara, and Landsberg erecta are not nulls; however, they exhibit lower steady-state mRNA levels than strong alleles of FLC. Sequence analysis indicates that these weak alleles of FLC have arisen independently at least twice during the course of evolution.


Nature Genetics | 2006

Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires LIKE HETEROCHROMATIN PROTEIN 1.

Sibum Sung; Yuehui He; Tifani W Eshoo; Yosuke Tamada; Lianna Johnson; Kenji Nakahigashi; Koji Goto; Steve E. Jacobsen; Richard M. Amasino

Vernalization is the process by which sensing a prolonged exposure to winter cold leads to competence to flower in the spring. In winter annual Arabidopsis thaliana accessions, flowering is suppressed in the fall by expression of the potent floral repressor FLOWERING LOCUS C (FLC). Vernalization promotes flowering via epigenetic repression of FLC. Repression is accompanied by a series of histone modifications of FLC chromatin that include dimethylation of histone H3 at Lys9 (H3K9) and Lys27 (H3K27). Here, we report that A. thaliana LIKE HETEROCHROMATIN PROTEIN 1 (LHP1) is necessary to maintain the epigenetically repressed state of FLC upon return to warm conditions typical of spring. LHP1 is enriched at FLC chromatin after prolonged exposure to cold, and LHP1 activity is needed to maintain the increased levels of H3K9 dimethylation at FLC chromatin that are characteristic of the vernalized state.


The Plant Cell | 2005

Establishment of the Vernalization-Responsive, Winter-Annual Habit in Arabidopsis Requires a Putative Histone H3 Methyl Transferase

Sang Yeol Kim; Yuehui He; Yannick Jacob; Yoo-Sun Noh; Scott D. Michaels; Richard M. Amasino

Winter-annual accessions of Arabidopsis thaliana are often characterized by a requirement for exposure to the cold of winter to initiate flowering in the spring. The block to flowering prior to cold exposure is due to high levels of the flowering repressor FLOWERING LOCUS C (FLC). Exposure to cold promotes flowering through a process known as vernalization that epigenetically represses FLC expression. Rapid-cycling accessions typically have low levels of FLC expression and therefore do not require vernalization. A screen for mutants in which a winter-annual Arabidopsis is converted to a rapid-cycling type has identified a putative histone H3 methyl transferase that is required for FLC expression. Lesions in this methyl transferase, EARLY FLOWERING IN SHORT DAYS (EFS), result in reduced levels of histone H3 Lys 4 trimethylation in FLC chromatin. EFS is also required for expression of other genes in the FLC clade, such as MADS AFFECTING FLOWERING2 and FLOWERING LOCUS M. The requirement for EFS to permit expression of several FLC clade genes accounts for the ability of efs lesions to suppress delayed flowering due to the presence of FRIGIDA, autonomous pathway mutations, or growth in noninductive photoperiods. efs mutants exhibit pleiotropic phenotypes, indicating that the role of EFS is not limited to the regulation of flowering time.


PLOS ONE | 2008

Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis Polycomb repressive complex 2 components.

Danhua Jiang; Yuqi Wang; Yizhong Wang; Yuehui He

Polycomb group (PcG) proteins are evolutionarily conserved in animals and plants, and play critical roles in the regulation of developmental gene expression. Here we show that the Arabidopsis Polycomb repressive complex 2 (PRC2) subunits CURLY LEAF (CLF), EMBRYONIC FLOWER 2 (EMF2) and FERTILIZATION INDEPENDENT ENDOSPERM (FIE) repress the expression of FLOWERING LOCUS C (FLC), a central repressor of the floral transition in Arabidopsis and FLC relatives. In addition, CLF directly interacts with and mediates the deposition of repressive histone H3 lysine 27 trimethylation (H3K27me3) into FLC and FLC relatives, which suppresses active histone H3 lysine 4 trimethylation (H3K4me3) in these loci. Furthermore, we show that during vegetative development CLF and FIE strongly repress the expression of FLOWERING LOCUS T (FT), a key flowering-time integrator, and that CLF also directly interacts with and mediates the deposition of H3K27me3 into FT chromatin. Our results suggest that PRC2-like complexes containing CLF, EMF2 and FIE, directly interact with and deposit into FT, FLC and FLC relatives repressive trimethyl H3K27 leading to the suppression of active H3K4me3 in these loci, and thus repress the expression of these flowering genes. Given the central roles of FLC and FT in flowering-time regulation in Arabidopsis, these findings suggest that the CLF-containing PRC2-like complexes play a significant role in control of flowering in Arabidopsis.


The Plant Cell | 2002

A Gene Encoding an Acyl Hydrolase Is Involved in Leaf Senescence in Arabidopsis

Yuehui He; Susheng Gan

SAG101, a leaf senescence-associated gene, was cloned from an Arabidopsis leaf senescence enhancer trap line and functionally characterized. Reporter gene and RNA gel blot analyses revealed that SAG101 was not expressed until the onset of senescence in leaves. A recombinant SAG101 fusion protein overexpressed in Escherichia coli displayed acyl hydrolase activity. Antisense RNA interference in transgenic plants delayed the onset of leaf senescence for ∼4 days. Chemically induced overexpression of SAG101 caused precocious senescence in both attached and detached leaves of transgenic Arabidopsis plants. These data suggest that SAG101 plays a significant role in leaf senescence.


The Plant Cell | 2007

Arabidopsis Relatives of the Human Lysine-Specific Demethylase1 Repress the Expression of FWA and FLOWERING LOCUS C and Thus Promote the Floral Transition

Danhua Jiang; Wannian Yang; Yuehui He; Richard M. Amasino

The timing of the developmental transition to flowering is critical to reproductive success in plants. Here, we show that Arabidopsis thaliana homologs of human Lysine-Specific Demethylase1 (LSD1; a histone H3-Lys 4 demethylase) reduce the levels of histone H3-Lys 4 methylation in chromatin of the floral repressor FLOWERING LOCUS C (FLC) and the sporophytically silenced floral repressor FWA. Two of the homologs, LSD1-LIKE1 (LDL1) and LSD1-LIKE2 (LDL2), act in partial redundancy with FLOWERING LOCUS D (FLD; an additional homolog of LSD1) to repress FLC expression. However, LDL1 and LDL2 appear to act independently of FLD in the silencing of FWA, indicating that there is target gene specialization within this histone demethylase family. Loss of function of LDL1 and LDL2 affects DNA methylation on FWA, whereas FLC repression does not appear to involve DNA methylation; thus, members of the LDL family can participate in a range of silencing mechanisms.


Genetics | 2007

Evolutionary Conservation of the FLOWERING LOCUS C-Mediated Vernalization Response: Evidence From the Sugar Beet (Beta vulgaris)

Patrick A. Reeves; Yuehui He; Robert J. Schmitz; Richard M. Amasino; Lee Panella; Christopher M. Richards

In many plant species, exposure to a prolonged period of cold during the winter promotes flowering in the spring, a process termed vernalization. In Arabidopsis thaliana, the vernalization requirement of winter-annual ecotypes is caused by the MADS-box gene FLOWERING LOCUS C (FLC), which is a repressor of flowering. During the vernalization process, FLC is downregulated by alteration of its chromatin structure, thereby permitting flowering to occur. In wheat, a vernalization requirement is imposed by a different repressor of flowering, suggesting that some components of the regulatory network controlling the vernalization response differ between monocots and dicots. The extent to which the molecular mechanisms underlying vernalization have been conserved during the diversification of the angiosperms is not well understood. Using phylogenetic analysis, we identified homologs of FLC in species representing the three major eudicot lineages. FLC homologs have not previously been documented outside the plant family Brassicaceae. We show that the sugar beet FLC homolog BvFL1 functions as a repressor of flowering in transgenic Arabidopsis and is downregulated in response to cold in sugar beet. Cold-induced downregulation of an FLC-like floral repressor may be a central feature of the vernalization response in at least half of eudicot species.


Trends in Plant Science | 2012

Chromatin regulation of flowering

Yuehui He

The transition to flowering is a major developmental switch in the life cycle of plants. In Arabidopsis (Arabidopsis thaliana), chromatin mechanisms play critical roles in flowering-time regulation through the expression control of key flowering-regulatory genes. Various conserved chromatin modifiers, plant-specific factors, and long noncoding RNAs are involved in chromatin regulation of FLOWERING LOCUS C (FLC, a potent floral repressor). The well-studied FLC regulation has provided a paradigm for chromatin-based control of other developmental genes. In addition, chromatin modification plays an important role in the regulation of FLOWERING LOCUS T (FT, encoding florigen), which is widely conserved in angiosperm species. The chromatin mechanisms underlying FT regulation in Arabidopsis are likely involved in the regulation of FT relatives and, therefore, flowering-time control in other plants.


Plant Journal | 2009

Repression of the floral transition via histone H2B monoubiquitination

Xiaofeng Gu; Danhua Jiang; Yuqi Wang; Andreas Bachmair; Yuehui He

The Rad6-Bre1 complex monoubiquitinates histone H2B in target gene chromatin, and plays an important role in positively regulating gene expression in yeast. Here, we show that the Arabidopsis relatives of the yeast Rad6, ubiquitin-conjugating enzyme 1 (UBC1) and UBC2, redundantly mediate histone H2B monoubiquitination, and upregulate the expression of FLOWERING LOCUS C (FLC; a central flowering repressor in Arabidopsis) and FLC relatives, and also redundantly repress flowering, the developmental transition from a vegetative to a reproductive phase that is critical in the plant life cycle. Moreover, we have found that Arabidopsis relatives of the yeast Bre1, including HISTONE MONOUBIQUITINATION 1 (HUB1) and HUB2, also upregulate the expression of FLC and FLC relatives, and that HUB1 genetically interacts with UBC1 and UBC2 to repress the floral transition. These findings are consistent with a model in which HUB1 and HUB2 specifically interact with and direct UBC1 and UBC2 to monoubiquitinate H2B in developmental genes, and thus regulate developmental processes in plants.

Collaboration


Dive into the Yuehui He's collaboration.

Top Co-Authors

Avatar

Danhua Jiang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Gu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Richard M. Amasino

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Yizhong Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Susheng Gan

University of Kentucky

View shared research outputs
Top Co-Authors

Avatar

Zicong Li

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Wannian Yang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Scott D. Michaels

Indiana University Bloomington

View shared research outputs
Top Co-Authors

Avatar

Eng-Seng Gan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Toshiro Ito

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge