Yuejiao Huang
Nantong University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuejiao Huang.
Leukemia Research | 2015
Yunhua He; Yuchan Wang; Hong Liu; Xiaohong Xu; Song He; Jie Tang; Yuejiao Huang; Xiaobing Miao; Yaxun Wu; Qiru Wang; Chun Cheng
Cell adhesion mediated drug resistance (CAM-DR) remains the major barrier in human multiple myeloma (MM) therapy. In the present study, we aimed at investigating the role of pyruvate kinase isoform M2 (PKM2) in MM CAM-DR. We determined that PKM2 expression was positively correlated with cell proliferation and knockdown of PKM2 contributed to the increased cell adhesion rate in MM. The enhancement in the adhesion of MM cells to fibronectin or the bone marrow stroma cell line HS-5 cells translated to an increased CAM-DR phenotype. Importantly, we showed that this CAM-DR phenotype was correlated with the phosphorylation of Akt and ERK in MM cells. Taken together, our data shed new light on the molecular mechanism of CAM-DR in MM, and targeting PKM2 may be a novel therapeutic approach for improving the effectiveness of chemotherapy in MM.
International Journal of Hematology | 2014
Shan Shao; Xianting Huang; Yuchan Wang; Song He; Xiaohong Xu; Xinghua Zhu; Xiaojing Yang; Zongmei Ding; Li Yao; Yuejiao Huang; Chun Wang
Previous studies have demonstrated that activator of G-protein signaling 3 (AGS3; also known as GPSM1), a member of the AGS family, plays an important anti-apoptotic role through enhancing the phosphorylation of cyclic AMP response element-binding protein (p-CREB). In this report, we delineate the anti-apoptotic role of AGS3 in multiple myeloma (MM). To do this, we developed a cell apoptotic model induced by doxorubicin in MM. Our data indicate that decreased expression of AGS3 is correlated with reduced levels of p-CREB in the apoptotic model. The negative role of AGS3 in cell apoptosis was further confirmed by knocking down AGS3. The microenvironment has been shown to influence tumor cell phenotype in response to chemotherapy. Since cell adhesion-mediated drug resistance remains a major obstacle for successful treatment of MM, we constructed a cell adhesion model in MM and detected the changing of AGS3 protein expression. AGS3 siRNA reversed the high rate of MM cell adhesion to either fibronectin or HS-5 cells. Consistent with the reduced adhesion rate, the cells also exhibited reduced drug resistance to doxorubicin, mitoxantrone, and dexamethasone. Collectively, these data indicate that AGS3 may be represented as a good candidate for pursuing clinical trials in MM. Moreover, our data provide a clinical therapeutic target for MM and potentially other tumors that home and/or metastasize to the bone.
Leukemia Research | 2014
Yuchan Wang; Yuejiao Huang; Xiaohong Xu; Jie Tang; Xianting Huang; Junya Zhu; Jing Liu; Xiaobing Miao; Yaxun Wu; Fan Yang; Lili Ji; Song He
The expression and biologic function of SGTA in Non-Hodgkins Lymphomas (NHL) was investigated in this study. Clinically, by immunohistochemistry analysis we detected SGTA expression in both reactive lymphoid tissues and NHL tissues. In addition, we also correlated high expression of SGTA with poor prognosis. Functionally, SGTA expression was positively related with cell proliferation and negative related with cell adhesion. Finally, SGTA knockdown induced adhesion-mediated drug resistance. Our finding supports a role of SGTA in NHL cell proliferation, adhesion and drug resistance, and it may pave the way for a novel therapeutic approach for CAM-DR in NHL.
International Journal of Biological Macromolecules | 2015
Yuchan Wang; Yaxun Wu; Xiaobing Miao; Xinghua Zhu; Yunhua He; Linlin Ding; Jing Liu; Jie Tang; Yuejiao Huang; Xiaohong Xu; Song He
DYRK2, a dual-specificity tyrosine-(Y)-phosphorylation regulated kinase gene, is involved in regulating many processes such as cell proliferation, cell differentiation and cytokinesis. DYRK2 also plays an important role in many cancers, such as breast cancer, non-small cell lung cancer and esophageal adenocarcinomas. In this study, we found that DYRK2 is associated with the proliferation of Non-Hodgkins lymphoma (NHL) and cell adhesion mediated drug resistance (CAM-DR). Clinically, the mRNA and protein expression levels of DYRK2 are decreased in NHL tissues compared with reactive lymphoid hyperplasia tissues. Immunohistochemical analysis revealed that low expression of DYRK2 is associated with poor prognosis of NHL patients. Interestingly, knockdown of DYRK2 can promote cell proliferation via modulating cell cycle progression. Finally, we demonstrated that DYRK2 plays an important role in CAM-DR by regulating p27(Kip1) expression. Importantly, DYRK2 knockdown reverses CAM-DR in NHL. Our research suggested that DYRK2 may be a novel therapeutic target for NHL.
Tumor Biology | 2016
Lei Yang; Junya Zhu; Jianguo Zhang; Bo-jun Bao; Chengqi Guan; Xiaojing Yang; Yanhua Liu; Yuejiao Huang; Runzhou Ni; Lili Ji
The human far upstream element (FUSE) binding protein 1 (FUBP1) belongs to an ancient family which is required for proper regulation of the c-Myc proto-oncogene. Although c-Myc plays an important role in development of various carcinomas, the relevance of FUBP1 and their contribution to esophageal squamous cell carcinoma (ESCC) development remain unclear. In this study, we aimed to investigate the relationship between FUBP1 and c-Myc as well as their contribution to ESCC development. Western blot and immunohistochemical analyses were performed to evaluate FUBP1 expression. Coimmunoprecipitation analysis was performed to explore the correlation between FUBP1 and c-Myc in ESCC. In addition, the role of FUBP1 in ESCC proliferation was studied in ESCC cells through knocking FUBP1 down. The regulation of FUBP1 on proliferation was confirmed by Cell Counting Kit-8 (CCK-8) assay, flow cytometric assays, and clone formation assays. The expressions of FUBP1 and c-Myc were both upregulated in ESCC tissues. In addition to correlation between expression of FUBP1 and tumor grade, we also confirmed the correlation of FUBP1, c-Myc, and Ki-67 expression by twos. Moreover, upregulation of FUBP1 and c-Myc in ESCC was associated with poor survival. FUBP1 was confirmed to activate c-Myc in ESCC tissues and cells. FUBP1 was demonstrated to promote proliferation of ESCC cells. Moreover, downregulation of both FUBP1 and c-Myc was confirmed to inhibit proliferation of ESCC cells. Our results indicated that FUBP1 may potentially stimulate c-Myc expression in ESCC and its expression may promote ESCC progression.
Leukemia & Lymphoma | 2015
Song He; Yuejiao Huang; Yuchan Wang; Jie Tang; Yan Song; Xiafei Yu; Jing Ma; Shitao Wang; Haibing Yin; Qiuyue Li; Lili Ji; Xiaohong Xu
Abstract Mounting evidence has proved that cellular adhesion confers resistance to chemotherapy in multiple lymphomas. The molecular mechanism underlying cell adhesion-mediated drug resistance (CAM-DR) is, however, poorly understood. In this study, we investigated the expression and biologic function of histamine-releasing factor (HRF) in non-Hodgkin lymphomas (NHLs). Clinically, by immunohistochemistry analysis we observed obvious up-regulation of HRF in NHLs including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma (FL) and natural killer (NK)/T-cell lymphoma. Functionally, overexpression and knockdown of HRF demonstrated the antiapoptotic effect of HRF in NHL cells, which may be associated with activation of the p-CREB/BCL-2 signaling pathway. Moreover, cell adhesion assay demonstrated that adhesion to fibronectin (FN) or HS-5 up-regulated HRF expression, while knockdown of HRF resulted in decreased cell adhesion, which led to reversed CAM-DR. Our finding supports the role of HRF in NHL cell apoptosis, adhesion and drug resistance, and may provide a clinical therapeutic target for CAM-DR in NHL.
International Journal of Hematology | 2015
Jie Tang; Lili Ji; Yuchan Wang; Yuejiao Huang; Haibing Yin; Yunhua He; Jing Liu; Xiaobing Miao; Yaxun Wu; Xiaohong Xu; Song He; Chun Cheng
The expression and biologic function of the gene encoding vacuolar protein sorting 4B (VPS4B) in human multiple myeloma (MM) were investigated in this study. We determined that VPS4B expression is decreased in adherent MM cells and that knockdown of VPS4B expression induces cell adhesion-mediated drug resistance (CAM-DR) in MM. This induced CAM-DR phenotype manifested through down-regulation of cell apoptosis and requires phosphorylation of AKT and Erk. Finally, VPS4B expression was positively correlated with cell proliferation. Our findings support a role for VPS4B in MM cell proliferation, adhesion, and drug resistance, and pave the way for a novel therapeutic approach targeting this molecule.
Oncology Reports | 2016
Jie Tang; Hongxuan Zhou; Chun Wang; Xiaodong Fei; Liqun Zhu; Yuejiao Huang; Yunhua He; Jing Liu; Xiaobing Miao; Yaxun Wu; Yuchan Wang
Previous studies have demonstrated that Homer1b/c plays an important pro-apoptotic role through classical mitochondrial apoptotic pathway. The present study was undertaken to determine the expression and functional significance of Homer1b/c in multiple myeloma (MM). We found that Homer1b/c was lowly expressed in MM cell apoptotic model induced by doxorubicin. The positive role of Homer1b/c in cell apoptosis was further confirmed by knocking down Homer1b/c. Further study confirmed that Homer1b/c was able to affect the CAM-DR via pro-apoptotic activity regulating the ability of cell adhesion. Collectively, these data indicate that Homer1b/c may represent a good candidate for pursuing clinical trial in MM.
Hematology | 2016
Jing Liu; Yuchan Wang; Song He; Xiaohong Xu; Yuejiao Huang; Jie Tang; Yaxun Wu; Xiaobing Miao; Yunhua He; Qiru Wang; Li Liang; Chun Cheng
Objective: Vaccinia-related kinase 1 (VRK1) has been reported to participate in the development of a variety of tumors. However, the role of VRK1 in multiple myeloma (MM) has not been investigated. The present study was undertaken to determine the expression and biologic function of VRK1 in human MM. Methods: First, we constructed a model of cell adhesion in MM, the mRNA and protein level of VRK1 in suspension and adhesion model was analyzed by RT-PCR and western blot. Then, flow cytometry assay and western blot were used to investigate the mechanism of VRK1 in the proliferation of MM cells. In vitro, following using shRNA interfering VRK1 expression, we performed adhesion assay and cell viability assay to determine the effect of VRK1 on adhesive rate and drug sensitivity. Results: VRK1 was lowly expressed in adherent MM cells and highly expressed in suspended cells. In addition, VRK1 was positively correlated with the proliferation of MM cells by regulating the expression of cell cycle-related protein, such as cyclinD1, CDK2 and p27kip1. Furthermore, VRK1 could reverse cell adhesion mediated drug resistance (CAM-DR) by down-regulating the ability of cell adhesion. Conclusion and discussion: Our data supports a role for VRK1 in MM cell proliferation, adhesion, and drug resistance, and it may pave the way for a novel therapeutic approach for CAM-DR in MM.
Pathology Research and Practice | 2015
Hui Shi; Hanru Ren; Xiaojing Yang; Hongzhen Zhu; Li Yao; Qinglei Hang; Hui Mao; Yuejiao Huang; Jianguo Zhang; Yuchan Wang
BACKGROUND Activator of G-protein Signaling 3 (AGS3, also known as GPSM1), is related to cell cycle progression. We investigated the expression of AGS3 in human esophageal squamous cell carcinoma (ESCC) and the therapeutic effect of chemotherapy drugs. METHODS Immunohistochemistry and Western blot analysis were performed for AGS3 in 85ESCC samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine its prognostic significance. The effect of overexpression of AGS3 on proliferation of esophageal carcinoma TE1 cells was analyzed by serum starvation. RESULTS AGS3 was down regulated in ESCC as compared with the adjacent normal tissue. Low expression of AGS3 was associated with tumor grade (P=0.002), and AGS3 was negatively correlated with proliferation marker Ki-67 (P<0.01). Univariate analysis showed that AGS3 expression did have a remarkable prediction for poor prognosis (P=0.004), while in vitro, the expression of AGS3 was down regulated with release from serum starvation of TE1 cells. CONCLUSIONS This study shows that AGS3 is an important regulator of ESCC proliferation.