Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuejin Liang is active.

Publication


Featured researches published by Yuejin Liang.


Journal of Immunology | 2013

IL-33 Induces Nuocytes and Modulates Liver Injury in Viral Hepatitis

Yuejin Liang; Zuliang Jie; Lifei Hou; Renan Aguilar-Valenzuela; David Vu; Lynn Soong; J. Sun

Molecules containing damage-associated molecular patterns play an important role in many pathogenic processes. In this study, our aim was to investigate the role of IL-33, a damage-associated molecular pattern molecule, in adenovirus (Ad)-induced liver inflammation. Ad-infected mice exhibited a steadily increased IL-33 and its receptor IL-1R–like 1 expression in the liver during the first week of infection. Treatment of exogenous IL-33 resulted in a great decrease in the serum alanine aminotransferase levels and the number of Councilman bodies in the liver. Attenuated liver injury by IL-33 correlated with an increase in T regulatory cells but with a decrease in macrophages, dendritic cells, and NK cells in the liver. IL-33 enhanced both type 1 (IL-2 and IFN-γ) and type 2 (IL-5 and IL-13) immune responses in infected mice. However, IL-33 inhibited TNF-α expression in hepatic T cells and macrophages, and significantly reduced TNF-α levels in the liver. We found that in addition to its direct effects, IL-33 strongly induced novel nuocytes in the livers and spleens of infected mice. When cocultured with nuocytes, hepatic T cells and macrophages expressed lower levels of TNF-α. The IL-33–treated mice also demonstrated a slight delay, but no significant impairment, in eliminating an intrahepatic infection with Ad. In conclusion, this study reveals that IL-33 acts as a potent immune stimulator and a hepatoprotective cytokine in acute viral hepatitis. Its direct immunoregulatory functions and ability to induce novel nuocytes further suggest to us that it may be a potentially promising therapeutic candidate for the management of viral hepatitis.


Journal of Immunology | 2013

Early IL-17 production by intrahepatic T cells is important for adaptive immune responses in viral hepatitis

Lifei Hou; Zuliang Jie; Mayura M. Desai; Yuejin Liang; Lynn Soong; Tian Wang; J. Sun

This study was conducted to examine the interactions among the innate and adaptive immune components of the liver parenchyma during acute viral hepatitis. Mice were i.v. infected with a recombinant adenovirus, and within the first 24 h of infection, we found a transient but significant accumulation of IL-17 and IL-23 in the liver. In vivo neutralization of these interleukins alleviated the liver injury. Further investigations showed that IL-17 neutralization halted the intrahepatic accumulation of CTLs and Th1 cells. A majority of the IL-17–producing cells in the liver were γδ T cells. Additionally, intrahepatic IL-17+ γδ T cells, but not the IFN-γ+ ones, preferentially expressed IL-7Rα (CD127) on their surface, which coincided with an elevation of hepatocyte-derived IL-7 at 12 h postinfection. IL-7Rα blockade in vivo severely impeded the expansion of IL-17–producing cells after viral infection. In vitro, IL-7 synergized with IL-23 and directly stimulated IL-17 production from γδ T cells in response to TCRγδ stimulation. Finally, type I IFN (IFN-I) signaling was found to be critical for hepatic IL-7 induction. Collectively, these results showed that the IFN-I/IL-7/IL-17 cascade was important in priming T cell responses in the liver. Moreover, the highly coordinated cross talk among hepatocytes and innate and adaptive immune cells played a critical role in anti-viral immunity in hepatitis.


Journal of Immunology | 2014

Intrahepatic Innate Lymphoid Cells Secrete IL-17A and IL-17F That Are Crucial for T Cell Priming in Viral Infection

Zuliang Jie; Yuejin Liang; Lifei Hou; Chen Dong; Yoichiro Iwakura; Lynn Soong; Yingzi Cong; J. Sun

Intrahepatic cell-derived, early IL-17 is important for activating APCs in viral infection; however, the source and regulation of this IL-17 surge in the liver microenvironment are not well defined. In this article, we present evidence for a significant expansion of IL-17A/F–producing cells in mouse liver within 24 h of adenovirus infection. In addition to γδ T cells, a subset of IL-17A/F+ cells expressed no myeloid or lymphoid lineage markers. Instead, they expressed high levels of stem cell markers, IL-7R and RORγt, consistent with the newly described innate lymphoid cells (ILCs). Based on their unique surface markers and cytokine profiles, these cells were confirmed as group 3 ILCs. In addition to adenovirus infection, group 3 ILCs were also found in mouse liver within 24 h of lymphocytic choriomeningitis virus infection. They contributed significantly to the establishment of the early cytokine milieu in virus-infected liver. Functional studies with mice deficient of IL-17R, IL-17A, and IL-17F further revealed that IL-17 signaling was critical for priming T cell responses in viral hepatitis. IL-17A repressed IL-17F secretion in vitro and in vivo; IL-17F+ intrahepatic cells expanded more vigorously in IL-17A knockout animals, permitting efficient Ag presentation and T cell function. However, IL-17F neither inhibited IL-17A in vitro nor regulated its secretion in vivo. Together, this study has demonstrated the importance of a unique intrahepatic subpopulation and subsequent IL-17A/F regulation at initial stages of viral infection in the liver. These results have important implications for anticytokine biologic therapy and vaccine development.


Clinical and Experimental Immunology | 2015

Permissive and protective roles for neutrophils in leishmaniasis

Eric D. Carlsen; Yuejin Liang; Thomas R. Shelite; David H. Walker; Peter C. Melby; Lynn Soong

Leishmania parasites are the causative agents of leishmaniasis, a neglected tropical disease that causes substantial morbidity and considerable mortality in many developing areas of the world. Recent estimates suggest that roughly 10 million people suffer from cutaneous leishmaniasis (CL), and approximately 76 000 are afflicted with visceral leishmaniasis (VL), which is universally fatal without treatment. Efforts to develop therapeutics and vaccines have been greatly hampered by an incomplete understanding of the parasites biology and a lack of clear protective correlates that must be met in order to achieve immunity. Although parasites grow and divide preferentially in macrophages, a number of other cell types interact with and internalize Leishmania parasites, including monocytes, dendritic cells and neutrophils. Neutrophils appear to be especially important shortly after parasites are introduced into the skin, and may serve a dual protective and permissive role during the establishment of infection. Curiously, neutrophil recruitment to the site of infection appears to continue into the chronic phase of disease, which may persist for many years. The immunological impact of these cells during chronic leishmaniasis is unclear at this time. In this review we discuss the ways in which neutrophils have been observed to prevent and promote the establishment of infection, examine the role of anti‐neutrophil antibodies in mouse models of leishmaniasis and consider recent findings that neutrophils may play a previously unrecognized role in influencing chronic parasite persistence.


PLOS Neglected Tropical Diseases | 2014

Strong type 1, but impaired type 2, immune responses contribute to Orientia tsutsugamushi-induced pathology in mice.

Lynn Soong; Hui Wang; Thomas R. Shelite; Yuejin Liang; Nicole L. Mendell; J. Sun; Bin Gong; Gustavo Valbuena; Donald H. Bouyer; David H. Walker

Scrub typhus is a neglected, but important, tropical disease, which puts one-third of the worlds population at risk. The disease is caused by Orientia tsutsugamushi, an obligately intracellular Gram-negative bacterium. Dysregulation in immune responses is known to contribute to disease pathogenesis; however, the nature and molecular basis of immune alterations are poorly defined. This study made use of a newly developed murine model of severe scrub typhus and focused on innate regulators and vascular growth factors in O. tsutsugamushi-infected liver, lungs and spleen. We found no activation or even reduction in base-line expression for multiple molecules (IL-7, IL-4, IL-13, GATA3, ROR-γt, and CXCL12) at 2, 6 and 10 days post-infection. This selective impairment in type 2-related immune responses correlated with a significant activation of the genes for IL-1β, IL-6, IL-10, TNF-α, IFN-γ, as well as CXCR3- and CXCR1-related chemokines in inflamed tissues. The elevated angiopoietin (Ang)-2 expression and Ang-2/Ang-1 ratios suggested excessive inflammation and the loss of endothelial integrity. These alterations, together with extensive recruitment of myeloperoxidase (MPO)-expressing neutrophils and the influx of CD3+ T cells, contributed to acute tissue damage and animal death. This is the first report of selective alterations in a panel of immune regulators during early O. tsutsugamushi infection in intravenously inoculated C57BL/6 mice. Our findings shed new light on the pathogenic mechanisms associated with severe scrub typhus and suggest potential targets for therapeutic investigation.


Journal of Innate Immunity | 2015

Interactions between Neutrophils and Leishmania braziliensis Amastigotes Facilitate Cell Activation and Parasite Clearance

Eric D. Carlsen; Zuliang Jie; Yuejin Liang; Calvin A. Henard; Christie Hay; J. Sun; Herbert Leonel de Matos Guedes; Lynn Soong

Leishmania braziliensis and Leishmania amazonensis are both causative agents of cutaneous leishmaniasis in South America. However, patient prognosis and the host immune response differ considerably depending on the infecting parasite species. The mechanisms underlying these differences appear to be multifactorial, with both host and parasite components contributing to disease outcome. As neutrophils are a prominent component of the inflammatory infiltrate in chronic cutaneous, diffuse cutaneous and mucocutaneous lesions, we examined neutrophil activation and microbicidal activity against amastigotes of L. amazonensis and L. braziliensis. We found that murine neutrophils internalized L. braziliensis amastigotes with greater efficiency than did L. amazonensis amastigotes. Additionally, L. braziliensis infection was a potent trigger for neutrophil activation, oxidative burst, degranulation and the production of interleukin (IL)-22 and IL-10, while L. amazonensis amastigotes poorly induced these responses. Finally, neutrophils were able to kill L. braziliensis amastigotes, especially when cells were activated with phorbol myristate acetate. L. amazonensis amastigotes, however, were highly resistant to neutrophil microbicidal mechanisms. This study reveals, for the first time, differential neutrophil responsiveness to distinct species of Leishmania amastigotes and highlights the complexity of neutrophil-amastigote interactions during chronic leishmaniasis.


European Journal of Immunology | 2015

IL-33 promotes innate IFN-γ production and modulates dendritic cell response in LCMV-induced hepatitis in mice.

Yuejin Liang; Zuliang Jie; Lifei Hou; Panpan Yi; Wei Wang; Zakari Kwota; Maria S. Salvato; Rene de Waal Malefyt; Lynn Soong; J. Sun

Recent studies have revealed IL‐33 as a key factor in promoting antiviral T‐cell responses. However, it is less clear as to how IL‐33 regulates innate immunity. In this study, we infected wild‐type (WT) and IL‐33−/− mice with lymphocytic choriomeningitis virus and demonstrated an essential role of infection‐induced IL‐33 expression for robust innate IFN‐γ production in the liver. We first show that IL‐33 deficiency resulted in a marked reduction in the number of IFN‐γ+ γδ T and NK cells, but an increase in that of IL‐17+ γδ T cells at 16 h postinfection. Recombinant IL‐33 (rIL‐33) treatment could reverse such deficiency via increasing IFN‐γ‐producing γδ T and NK cells, and inhibiting IL‐17+ γδ T cells. We also found that rIL‐33‐induced type 2 innate lymphoid cells were not involved in T‐cell responses and liver injury, since the adoptive transfer of type 2 innate lymphoid cells neither affected the IFN‐γ and TNF‐α production in T cells, nor liver transferase levels in lymphocytic choriomeningitis virus infected mice. Interestingly, we found that while IL‐33 was not required for costimulatory molecule expression, it was critical for DC proliferation and cytokine production. Together, this study highlights an essential role of IL‐33 in regulating innate IFN‐γ‐production and DC function during viral hepatitis.


Cellular & Molecular Immunology | 2015

Type 1 interferon-induced IL-7 maintains CD8 + T-cell responses and homeostasis by suppressing PD-1 expression in viral hepatitis

Lifei Hou; Zuliang Jie; Yuejin Liang; Mayura M. Desai; Lynn Soong; J. Sun

Type 1 interferon (IFN-I) promotes antigen-presenting cell maturation and was recently shown to induce hepatic IL-7 production during infection. Herein, we further explored the underlying mechanisms used by IFN-I to orchestrate antiviral immune responses in the liver. Acute viral hepatitis was induced by i.v. injection of adenovirus (Ad) in IFN-α receptor knockout (IFNAR−/−) and control mice. To disrupt signaling, monoclonal antibodies (mAbs) against IL-7 receptor alpha (IL-7Rα) or PD-L1 were i.p. injected. We found that CD8+ T cells in IFNAR−/− mice were less effective than those in control mice. The reduced T-cell function was accompanied by increased levels of PD-1 expression, apoptosis and decreased IFN-γ production. The lack of IFN-I signaling also impaired the expression of accessory molecules in both intrahepatic dendritic cell (DCs) and hepatocytes. PD-L1 was comparably and highly expressed on hepatocytes in both IFNAR−/− and control mice. Injection of PD-L1-specific mAb in IFNAR−/− mice reversed the compromised immune responses in the liver. Further investigation showed that hepatic IL-7 elevation was less pronounced in IFNAR−/− mice compared to the controls. A treatment with recombinant IL-7 suppressed PD-1 expression on CD8+ T cells in vitro. Accordingly, blocking IL-7R signaling in vivo resulted in increased PD-1 expression on CD8+ T cells in Ad-infected mice. Collectively, the results suggest that IFN-I-induced hepatic IL-7 production maintains antiviral CD8+ T-cell responses and homeostasis by suppressing PD-1 expression in acute viral hepatitis.


PLOS Neglected Tropical Diseases | 2016

IL-33-Dependent Endothelial Activation Contributes to Apoptosis and Renal Injury in Orientia tsutsugamushi-Infected Mice

Thomas R. Shelite; Yuejin Liang; Hui Wang; Nicole L. Mendell; Brandon J. Trent; J. Sun; Bin Gong; Guang Xu; Haitao Hu; Donald H. Bouyer; Lynn Soong

Endothelial cells (EC) are the main target for Orientia tsutsugamushi infection and EC dysfunction is a hallmark of severe scrub typhus in patients. However, the molecular basis of EC dysfunction and its impact on infection outcome are poorly understood. We found that C57BL/6 mice that received a lethal dose of O. tsutsugamushi Karp strain had a significant increase in the expression of IL-33 and its receptor ST2L in the kidneys and liver, but a rapid reduction of IL-33 in the lungs. We also found exacerbated EC stress and activation in the kidneys of infected mice, as evidenced by elevated angiopoietin (Ang) 2/Ang1 ratio, increased endothelin 1 (ET-1) and endothelial nitric oxide synthase (eNOS) expression. Such responses were significantly attenuated in the IL-33-/- mice. Importantly, IL-33-/- mice also had markedly attenuated disease due to reduced EC stress and cellular apoptosis. To confirm the biological role of IL-33, we challenged wild-type (WT) mice with a sub-lethal dose of O. tsutsugamushi and gave mice recombinant IL-33 (rIL-33) every 2 days for 10 days. Exogenous IL-33 significantly increased disease severity and lethality, which correlated with increased EC stress and activation, increased CXCL1 and CXCL2 chemokines, but decreased anti-apoptotic gene BCL-2 in the kidneys. To further examine the role of EC stress, we infected human umbilical vein endothelial cells (HUVEC) in vitro. We found an infection dose-dependent increase in the expression of IL-33, ST2L soluble ST2 (sST2), and the Ang2/Ang1 ratio at 24 and 48 hours post-infection. This study indicates a pathogenic role of alarmin IL-33 in a murine model of scrub typhus and highlights infection-triggered EC damage and IL-33-mediated pathological changes during the course of Orientia infection.


Journal of Immunology | 2017

Retinoic Acid Regulates Immune Responses by Promoting IL-22 and Modulating S100 Proteins in Viral Hepatitis

Zuliang Jie; Yuejin Liang; Panpan Yi; Hui Tang; Lynn Soong; Yingzi Cong; Kangling Zhang; J. Sun

Although large amounts of vitamin A and its metabolite all-trans retinoic acid (RA) are stored in the liver, how RA regulates liver immune responses during viral infection remains unclear. In this study, we demonstrated that IL-22, mainly produced by hepatic γδ T cells, attenuated liver injury in adenovirus-infected mice. RA can promote γδ T cells to produce mTORC1-dependent IL-22 in the liver, but inhibits IFN-γ and IL-17. RA also affected the aptitude of T cell responses by modulating dendritic cell (DC) migration and costimulatory molecule expression. These results suggested that RA plays an immunomodulatory role in viral infection. Proteomics data revealed that RA downregulated S100 family protein expression in DCs, as well as NF-κB/ERK pathway activation in these cells. Furthermore, adoptive transfer of S100A4-repressed, virus-pulsed DCs into the hind foot of naive mice failed to prime T cell responses in draining lymph nodes. Our study has demonstrated a crucial role for RA in promoting IL-22 production and tempering DC function through downregulating S100 family proteins during viral hepatitis.

Collaboration


Dive into the Yuejin Liang's collaboration.

Top Co-Authors

Avatar

J. Sun

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Lynn Soong

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Zuliang Jie

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Lifei Hou

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Thomas R. Shelite

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

David H. Walker

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Hui Wang

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Panpan Yi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Yingzi Cong

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Bin Gong

University of Texas Medical Branch

View shared research outputs
Researchain Logo
Decentralizing Knowledge