Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuelin Mu is active.

Publication


Featured researches published by Yuelin Mu.


PLOS ONE | 2013

Metagenomic Analysis of the Pygmy Loris Fecal Microbiome Reveals Unique Functional Capacity Related to Metabolism of Aromatic Compounds

Bo Xu; Weijiang Xu; Fuya Yang; Junjun Li; Yunjuan Yang; Xianghua Tang; Yuelin Mu; Junpei Zhou; Zunxi Huang

The animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host. An analysis of 78,619 pyrosequencing reads generated from pygmy loris fecal DNA extracts was performed to help better understand the microbial diversity and functional capacity of the pygmy loris gut microbiome. The taxonomic analysis of the metagenomic reads indicated that pygmy loris fecal microbiomes were dominated by Bacteroidetes and Proteobacteria phyla. The hierarchical clustering of several gastrointestinal metagenomes demonstrated the similarities of the microbial community structures of pygmy loris and mouse gut systems despite their differences in functional capacity. The comparative analysis of function classification revealed that the metagenome of the pygmy loris was characterized by an overrepresentation of those sequences involved in aromatic compound metabolism compared with humans and other animals. The key enzymes related to the benzoate degradation pathway were identified based on the Kyoto Encyclopedia of Genes and Genomes pathway assignment. These results would contribute to the limited body of primate metagenome studies and provide a framework for comparative metagenomic analysis between human and non-human primates, as well as a comparative understanding of the evolution of humans and their microbiome. However, future studies on the metagenome sequencing of pygmy loris and other prosimians regarding the effects of age, genetics, and environment on the composition and activity of the metagenomes are required.


Journal of Bioscience and Bioengineering | 2012

Novel low-temperature-active, salt-tolerant and proteases-resistant endo-1,4-β-mannanase from a new Sphingomonas strain.

Junpei Zhou; Rui Zhang; Yajie Gao; Junjun Li; Xianghua Tang; Yuelin Mu; Feng Wang; Chao Li; Yanyan Dong; Zunxi Huang

Sphingomonas sp. JB13, isolated from slag of a >20-year-old phosphate rock-stacking site, showed the highest 16S rDNA (1343bp) identity of 97.2% with Sphingomonas sp. ERB1-3 (FJ948169) and <97% identities with other identified Sphingomonas strains. A mannanase-coding gene (1191bp) was cloned and encodes a 396-residue polypeptide (ManAJB13) showing the highest amino acid sequence identities of 56.2% with the putative glycosyl hydrolase (GH) family 26 endo-1,4-β-mannanase from Rhodothermus marinus (YP_004824245), and 44.2% with the identified GH 26 endo-1,4-β-mannanase from Cellvibrio japonicus (2VX5_A). The recombinant ManAJB13 (rManAJB13) was expressed in Escherichia coli BL21 (DE3). Purified rManAJB13 displayed the typical characteristics of low-temperature-active enzymes: showing apparent optimal at 40°C, ~55% of the maximum activity at 20°C and ~20% at 10°C, and thermolability at 45°C (~15min half-life). The potential mechanism for low-temperature-activity of GH 26 endo-1,4-β-mannanases might be ascribed to the more hydrophobic residues (AILFWV) and less polar residues (NCQSTY) compared with typical thermophilic and mesophilic counterparts. The purified rManAJB13 exhibited >85% mannanase activity at the concentration of 0-4.0M NaCl. No loss of enzyme activity was observed after incubating the enzyme with 1M or 2M NaCl, or trypsin or proteinase K at 37°C and pH 6.5 for 1h. The K(m), V(max) and k(cat) values were 5.0mgml(-1), 277.8μmol min(-1)mg(-1), and 211.9s(-1), respectively, using locust bean gum as the substrate.


PLOS ONE | 2015

Properties of a Newly Identified Esterase from Bacillus sp. K91 and Its Novel Function in Diisobutyl Phthalate Degradation

Junmei Ding; Chaofan Wang; Zhenrong Xie; Junjun Li; Yunjuan Yang; Yuelin Mu; Xianghua Tang; Bo Xu; Junpei Zhou; Zunxi Huang

The widely used plasticizer phthalate esters (PAEs) have become a public concern because of their effects on environmental contamination and toxicity on mammals. However, the biodegradation of PAEs, especially diisobutyl phthalate (DiBP), remains poorly understood. In particular, genes involved in the hydrolysis of these compounds were not conclusively identified. In this study, the CarEW gene, which encodes an enzyme that is capable of hydrolyzing ρ-nitrophenyl esters of fatty acids, was cloned from a thermophilic bacterium Bacillus sp. K91 and heterologously expressed in Escherichia coli BL21 using the pEASY-E2 expression system. The enzyme showed a monomeric structure with a molecular mass of approximately 53.76 kDa and pI of 4.88. The enzyme exhibited maximal activity at pH 7.5 and 45°C, with ρ-NP butyrate as the best substrate. The enzyme was fairly stable within the pH range from 7.0 to 8.5. High-pressure liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS) were employed to detect the catabolic pathway of DiBP. Two intermediate products were identified, and a potential biodegradation pathway was proposed. Altogether, our findings present a novel DiBP degradation enzyme and indicate that the purified enzyme may be a promising candidate for DiBP detoxification and for environmental protection.


BMC Genomics | 2015

Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation

Bo Xu; Weijiang Xu; Junjun Li; Liming Dai; Caiyun Xiong; Xianghua Tang; Yunjuan Yang; Yuelin Mu; Junpei Zhou; Junmei Ding; Qian Wu; Zunxi Huang

BackgroundThe animal gastrointestinal tract contains a complex community of microbes, whose composition ultimately reflects the co-evolution of microorganisms with their animal host and the diet adopted by the host. Although the importance of gut microbiota of humans has been well demonstrated, there is a paucity of research regarding non-human primates (NHPs), especially herbivorous NHPs.ResultsIn this study, an analysis of 97,942 pyrosequencing reads generated from Rhinopithecus bieti fecal DNA extracts was performed to help better understanding of the microbial diversity and functional capacity of the R. bieti gut microbiome. The taxonomic analysis of the metagenomic reads indicated that R. bieti fecal microbiomes were dominated by Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria phyla. The comparative analysis of taxonomic classification revealed that the metagenome of R. bieti was characterized by an overrepresentation of bacteria of phylum Fibrobacteres and Spirochaetes as compared with other animals. Primary functional categories were associated mainly with protein, carbohydrates, amino acids, DNA and RNA metabolism, cofactors, cell wall and capsule and membrane transport. Comparing glycoside hydrolase profiles of R. bieti with those of other animal revealed that the R. bieti microbiome was most closely related to cow rumen.ConclusionsMetagenomic and functional analysis demonstrated that R. bieti possesses a broad diversity of bacteria and numerous glycoside hydrolases responsible for lignocellulosic biomass degradation which might reflect the adaptations associated with a diet rich in fibrous matter. These results would contribute to the limited body of NHPs metagenome studies and provide a unique genetic resource of plant cell wall degrading microbial enzymes. However, future studies on the metagenome sequencing of R. bieti regarding the effects of age, genetics, diet and environment on the composition and activity of the metagenomes are required.


Journal of Microbiology and Biotechnology | 2016

Molecular and Biochemical Characterization of a Novel Xylanase from Massilia sp. RBM26 Isolated from the Feces of Rhinopithecus bieti.

Bo Xu; Liming Dai; Junjun Li; Meng Deng; Huabiao Miao; Junpei Zhou; Yuelin Mu; Qian Wu; Xianghua Tang; Yunjuan Yang; Junmei Ding; Nanyu Han; Zunxi Huang

Xylanases sourced from different bacteria have significantly different enzymatic properties. Therefore, studying xylanases from different bacteria is important to their applications in different fields. A potential xylanase degradation gene in Massilia was recently discovered through genomic sequencing. However, its xylanase activity remains unexplored. This paper is the first to report a xylanase (XynRBM26) belonging to the glycosyl hydrolase family (GH10) from the genus Massilia. The gene encodes a 383-residue polypeptide (XynRBM26) with the highest identity of 62% with the endoxylanase from uncultured bacterium BLR13. The XynRBM26 expressed in Escherichia coli BL21 is a monomer with a molecular mass of 45.0 kDa. According to enzymatic characteristic analysis, pH 5.5 is the most appropriate for XynRBM26, which could maintain more than 90% activity between pH 5.0 and 8.0. Moreover, XynRBM26 is stable at 37°C and could maintain at least 96% activity after being placed at 37°C for 1 h. This paper is the first to report that GH10 xylanase in an animal gastrointestinal tract (GIT) has salt tolerance, which could maintain 86% activity in 5 M NaCl. Under the optimum conditions, Km, Vmax, and kcat of XynRBM26 to beechwood xylan are 9.49 mg/ml, 65.79 μmol/min/mg, and 47.34 /sec, respectively. Considering that XynRBM26 comes from an animal GIT, this xylanase has potential application in feedstuff. Moreover, XynRBM26 is applicable to high-salt food and seafood processing, as well as other high-salt environmental biotechnological fields, because of its high catalytic activity in high-concentration NaCl.


Journal of Microbiology and Biotechnology | 2016

Identification and Characterization of a New Alkaline SGNH Hydrolase from a Thermophilic Bacterium Bacillus sp. K91

Tingting Yu; Junmei Ding; Qingxia Zheng; Nanyu Han; Jialin Yu; Yunjuan Yang; Junjun Li; Yuelin Mu; Qian Wu; Zunxi Huang

est19 is a gene from Bacillus sp. K91 that encodes a new esterase. A comparison of the amino acid sequence showed that Est19 has typical Ser-Gly-Asn-His (SGNH) family motifs and could be grouped into the SGNH hydrolase family. The Est19 protein was functionally cloned, and expressed and purified from Escherichia coli BL21(DE3). The enzyme activity was optimal at 60°C and pH 9.0, and displayed esterase activity towards esters with short-chain acyl esters (C₂-C₆). A structural model of Est19 was constructed using phospholipase A1 from Streptomyces albidoflavus NA297 as a template. The structure showed an α/β-hydrolase fold and indicated the presence of the typical catalytic triad Ser49-Asp227-His230, which were further investigated by site-directed mutagenesis. To the best of our knowledge, Est19 is a new member of the SGNH hydrolase family identified from thermophiles, which may be applicable in the industrial production of semisynthetic β-lactam antibiotics after modification.


Journal of Industrial Microbiology & Biotechnology | 2012

A novel xylanase with tolerance to ethanol, salt, protease, SDS, heat, and alkali from actinomycete Lechevalieria sp. HJ3

Junpei Zhou; Yajie Gao; Yanyan Dong; Xianghua Tang; Junjun Li; Bo Xu; Yuelin Mu; Qian Wu; Zunxi Huang


Journal of Microbiology and Biotechnology | 2012

Cloning, heterologous expression, and characterization of novel protease-resistant α-galactosidase from new Sphingomonas strain.

Junpei Zhou; Yanyan Dong; Junjun Li; Rui Zhang; Xianghua Tang; Yuelin Mu; Bo Xu; Qian Wu; Zunxi Huang


SpringerPlus | 2016

NaCl-, protease-tolerant and cold-active endoglucanase from Paenibacillus sp. YD236 isolated from the feces of Bos frontalis.

Mingjie Dong; Yunjuan Yang; Xianghua Tang; Jidong Shen; Bo Xu; Junjun Li; Qian Wu; Junpei Zhou; Junmei Ding; Nanyu Han; Yuelin Mu; Zunxi Huang


Biotechnology for Biofuels | 2017

Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis

Nanyu Han; Huabiao Miao; Junmei Ding; Junjun Li; Yuelin Mu; Junpei Zhou; Zunxi Huang

Collaboration


Dive into the Yuelin Mu's collaboration.

Top Co-Authors

Avatar

Junjun Li

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Zunxi Huang

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Junpei Zhou

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Xianghua Tang

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Bo Xu

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Junmei Ding

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Yunjuan Yang

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Qian Wu

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Nanyu Han

Yunnan Normal University

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Yunnan Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge