Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yuexia Zhang is active.

Publication


Featured researches published by Yuexia Zhang.


Chemical Research in Toxicology | 2015

Effect of ambient PM(2.5) on lung mitochondrial damage and fusion/fission gene expression in rats.

Ruijin Li; Xiaojing Kou; Hong Geng; Jingfang Xie; Zhenhua Yang; Yuexia Zhang; Zongwei Cai; Chuan Dong

Exposure to ambient fine particulate matter (PM2.5) increases the risk of respiratory disease. Although previous mitochondrial research has provided new information about PM toxicity in the lung, the exact mechanism of PM2.5-mediated structural and functional damage of lung mitochondria remains unclear. In this study, changes in lung mitochondrial morphology, expression of mitochondrial fission/fusion markers, lipid peroxidation, and transport ATPase activity in SD rats exposed to ambient PM2.5 at different dosages were investigated. Also, the release of reactive oxygen species (ROS) via the respiratory burst in rat alveolar macrophages (AMs) exposed to PM2.5 was examined by luminol-dependent chemiluminescence (CL). The results showed that (1) PM2.5 deposited in the lung and induced pathological damage, particularly causing abnormal alterations of mitochondrial structure, including mitochondrial swelling and cristae disorder or even fragmentation in the presence of higher doses of PM2.5; (2) PM2.5 significantly affected the expression of specific mitochondrial fission/fusion markers (OPA1, Mfn1, Mfn2, Fis1, and Drp1) in rat lung; (3) PM2.5 inhibited Mn superoxide dismutase (MnSOD), Na(+)K(+)-ATPase, and Ca(2+)-ATPase activities and elevated malondialdehyde (MDA) content in rat lung mitochondria; and (4) PM2.5 induced rat AMs to produce ROS, which was inhibited by about 84.1% by diphenyleneiodonium chloride (DPI), an important ROS generation inhibitor. It is suggested that the pathological injury observed in rat lung exposed to PM2.5 is associated with mitochondrial fusion-fission dysfunction, ROS generation, mitochondrial lipid peroxidation, and cellular homeostasis imbalance. Damage to lung mitochondria may be one of the important mechanisms by which PM2.5 induces lung injury, contributing to respiratory diseases.


RSC Advances | 2015

High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging

Wenjing Lu; Xiaojuan Gong; Zhenhua Yang; Yuexia Zhang; Qin Hu; Shaomin Shuang; Chuan Dong; Martin M. F. Choi

An ingenious method for large-scale fabrication of water-soluble photoluminescent carbon dots (CDs) by a one-step microwave pyrolysis of oxalic acid (OA) and urea is developed. The structure and optical properties of the CDs are characterized by transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction patterns, elemental analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, UV-vis absorption, and photoluminescence spectroscopy. The mechanism for the formation of the CDs is also discussed. In contrast to other CD-based nanomaterials, the as-prepared CDs exhibit high fluorescent quantum yield and excellent stability in both organic and inorganic phases. After simple post-treatment, the CDs are applied as fluorescent powder, showing their promising potential for further wide usage. In addition, the CDs can be utilized as a modification-free biosensor reagent capable of detecting Fe3+ and Ag+ in complex environments. The linear ranges for Fe3+ and Ag+ were 1.0–130 and 0.50–200 μM with the corresponding detection limits of 4.8 and 2.4 nM, respectively. More significantly, the CDs are superior fluorescent bioimaging agents in plants and cells based on their excellent water-solubility and ultra-low toxicity. Finally, the as-synthesized CDs are successfully applied for detecting Fe3+ and Ag+ in biosystems.


Chemosphere | 2015

Investigation of fine chalk dust particles’ chemical compositions and toxicities on alveolar macrophages in vitro

Yuexia Zhang; Zhenhua Yang; Ruijin Li; Hong Geng; Chuan Dong

The aim of the study is to investigate chemical compositions of fine chalk dust particles (chalk PM2.5) and examine their adverse effects on alveolar macrophages (AMs) in vitro. Morphologies and element concentrations of individual chalk particles were analyzed by using the quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA). The oxidative response of AMs and the potential to generate nitric oxide (NO) by luminol-dependent chemiluminescence (CL) and nitrate reductase method were assessed 4h following the treatment of AMs with differing dosages of fine chalk particles, respectively. Oxidative stress and cytotoxicity elicited by chalk PM2.5 were also examined. The results showed that fine chalk particles were mainly composed of gypsum, calcite, dolomite and a little amount of organic adhesives. Exposure to chalk PM2.5 at 100 μg mL(-1) or 300 μg mL(-1) significantly increased intracellular catalase, malondialdehyde, and NO levels and decreased superoxide dismutase level in AMs, leading to leakage of lactate dehydrogenase (LDH) and reduction of the cell viability. Furthermore, luminol-dependent CL from respiratory burst in AMs was enhanced. It was suggested that chalk PM2.5 could make oxidative damages on AMs and result in cytotoxicity, being likely attributed to excessive reactive oxygen species or reactive nitrogen species induced by mixture of fine gypsum and calcite/dolomite particles.


Environmental Science and Pollution Research | 2018

Fine chalk dust induces inflammatory response via p38 and ERK MAPK pathway in rat lung

Yuexia Zhang; Zhenhua Yang; Yunzhu Chen; Ruijin Li; Hong Geng; Wenjuan Dong; Zongwei Cai; Chuan Dong

Chalk teaching is widely used in the world due to low cost, especially in some developing countries. During teaching with chalks, a large amount of fine chalk dust is produced. Although exposure to chalk dust is associated with respiratory diseases, the mechanism underlying the correlation between chalk dust exposure and adverse effects has not fully been elucidated. In this study, inflammation and its signal pathway in rat lungs exposed to fine chalk dust were examined through histopathology analyses; pro-inflammatory gene transcription; and protein levels measured by HE staining, RT-PCR, and western blot analysis. The results demonstrated that fine chalk dust increased neutrophils and up-regulated inflammatory gene mRNA levels (TNF-α, IL-6, TGF-β1, iNOS, and ICAM-1), and oxidative stress marker (HO-1) level, leading to the increase of inflammatory cell infiltration and inflammatory injury on the lungs. These inflammation responses were mediated, at least in part, via p38 and extracellular regulated proteinase (ERK) mitogen-activated protein kinase (MAPK) signaling mechanisms. In contrast, N-acetyl-L-cysteine (NAC) supplement significantly ameliorated these changes in inflammatory responses. Our results support the hypothesis that fine chalk dust can damage rat lungs and the NAC supplement may attenuate fine chalk dust-associated lung inflammation.


Toxicology Mechanisms and Methods | 2017

The role of pro-/anti-inflammation imbalance in Aβ42 accumulation of rat brain co-exposed to fine particle matter and sulfur dioxide

Zhenhua Yang; Yunzhu Chen; Yuexia Zhang; Ruijin Li; Chuan Dong

Abstract Taiyuan is a center of coal-based electricity production and many chemicals industries, where mixtures of sulfur dioxide (SO2) and particulate matter may be more prominent. The focus of the present study was to determine if there is a link between adverse effects in the brain and the combined-exposure to SO2 and fine particulate matter (PM2.5). Rats were exposed alternately to PM2.5 with different dosages (1.5, 6.0 and 24.0 mg/kg body weight) and SO2 at the level of 5.6 mg/m3. The results showed that the combined exposure to PM2.5 and SO2 enhanced the mRNA expression and protein level of TNF-α and IL-6 in rat cortex and hippocampus relative to the control, SO2 and PM2.5 alone. Instead, TGF-β1 mRNA and protein level were down-regulated in the brain. Additionally, PM2.5 at medium and/or high dose caused marked increase in Aβ42 level and PM2.5 + SO2 induced further increase of Aβ42 level in the cortex and hippocampus. It suggests that SO2 and PM2.5 can synergistically exert inflammation responses and induce Aβ42 accumulation in the brain. Also, it is notable that the Aβ42 accumulation of rat cortex and hippocampus were closely associated with pro-/anti-inflammatory cytokines ratio. These results clearly demonstrated that the combined exposure to PM2.5 and SO2 can induce the imbalance of pro-/anti-inflammatory cytokine, resulting in Aβ42 accumulation of rat brain cortex and hippocampus.


Procedia environmental sciences | 2013

Effect of HCl on spectral properties of sulfur dioxide and its derivatives dissolved in water

Zhenhua Yang; Yuexia Zhang; Quanxi Zhang; Tianxing Pei; Ziqiang Meng


Procedia environmental sciences | 2013

Effect of Chloride Salts and Bicarbonate on Solubility of CaSO4 in Aqueous Solutions at 37°C☆

Yuexia Zhang; Zhenhua Yang; Dan Guo; Hong Geng; Chuan Dong


Procedia environmental sciences | 2013

Impact of PM2.5 Derived from Dust Events on Daily Outpatient Numbers for Respiratory and Cardiovascular Diseases in Wuwei, China☆

Quanxi Zhang; Jian Zhang; Zhenhua Yang; Yuexia Zhang; Ziqiang Meng


Chinese Chemical Letters | 2015

Chemical compositions and effects on chemiluminescence of AMs in vitro of chalk dusts

Yuexia Zhang; Zhenhua Yang; Quanxi Zhang; Ruijin Li; Hong Geng; Chuan Dong


Archive | 2012

Method for measuring sulfur dioxide content in food

Yanqing Guo; Hong Geng; Yuexia Zhang; Chuan Dong

Collaboration


Dive into the Yuexia Zhang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zongwei Cai

Hong Kong Baptist University

View shared research outputs
Researchain Logo
Decentralizing Knowledge