Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where eyue Yu is active.

Publication


Featured researches published by eyue Yu.


Journal of Biological Chemistry | 2011

Erythropoietin Protects Intestinal Epithelial Barrier Function and Lowers the Incidence of Experimental Neonatal Necrotizing Enterocolitis

Shiou; Yueyue Yu; Chen S; Mae J. Ciancio; Elaine O. Petrof; Jun Sun; Erika C. Claud

The impermeant nature of the intestinal barrier is maintained by tight junctions (TJs) formed between adjacent intestinal epithelial cells. Disruption of TJs and loss of barrier function are associated with a number of gastrointestinal diseases, including neonatal necrotizing enterocolitis (NEC), the leading cause of death from gastrointestinal diseases in preterm infants. Human milk is protective against NEC, and the human milk factor erythropoietin (Epo) has been shown to protect endothelial cell-cell and blood-brain barriers. We hypothesized that Epo may also protect intestinal epithelial barriers, thereby lowering the incidence of NEC. Our data demonstrate that Epo protects enterocyte barrier function by supporting expression of the TJ protein ZO-1. As immaturity is a key factor in NEC, Epo regulation of ZO-1 in the human fetal immature H4 intestinal epithelial cell line was examined and demonstrated Epo-stimulated ZO-1 expression in a dose-dependent manner through the PI3K/Akt pathway. In a rat NEC model, oral administration of Epo lowered the incidence of NEC from 45 to 23% with statistical significance. In addition, Epo treatment protected intestinal barrier function and prevented loss of ZO-1 at the TJs in vivo. These effects were associated with elevated Akt phosphorylation in the intestine. This study reveals a novel role of Epo in the regulation of intestinal epithelial TJs and barrier function and suggests the possible use of enteral Epo as a therapeutic agent for gut diseases.


Epigenetics | 2016

Epigenome-Microbiome crosstalk: A potential new paradigm influencing neonatal susceptibility to disease

Rene Cortese; Yueyue Yu; Douglas M. Ruden; Erika C. Claud

ABSTRACT Preterm birth is the leading cause of infant morbidity and mortality. Necrotizing enterocolitis (NEC) is an inflammatory bowel disease affecting primarily premature infants, which can be lethal. Microbial intestinal colonization may alter epigenetic signatures of the immature gut establishing inflammatory and barrier properties predisposing to the development of NEC. We hypothesize that a crosstalk exists between the epigenome of the host and the initial intestinal colonizing microbiota at critical neonatal stages. By exposing immature enterocytes to probiotic and pathogenic bacteria, we showed over 200 regions of differential DNA modification, which were specific for each exposure. Reciprocally, using a mouse model of prenatal exposure to dexamethasone we demonstrated that antenatal treatment with glucocorticoids alters the epigenome of the host. We investigated the effects on the expression profiles of genes associated with inflammatory responses and intestinal barrier by qPCR-based gene expression array and verified the DNA modification changes in 5 candidate genes by quantitative methylation specific PCR (qMSP). Importantly, by 16S RNA sequencing-based phylogenetic analysis of intestinal bacteria in mice at 2 weeks of life, we showed that epigenome changes conditioned early microbiota colonization leading to differential bacterial colonization at different taxonomic levels. Our findings support a novel conceptual framework in which epigenetic changes induced by intrauterine influences affect early microbial colonization and intestinal development, which may alter disease susceptibility.


Pediatric Research | 2011

Mother's Milk-Induced Hsp70 Expression Preserves Intestinal Epithelial Barrier Function in an Immature Rat Pup Model

Jennifer Liedel; Yuee Guo; Yueyue Yu; Sheng Ru Shiou; Sangzi Chen; Elaine O. Petrof; Shien Hu; Mark W. Musch; Erika C. Claud

Preterm infants face many challenges in transitioning from the in utero to extrauterine environment while still immature. Failure of the preterm gut to successfully mature to accommodate bacteria and food substrate leads to significant morbidity such as neonatal necrotizing enterocolitis. The intestinal epithelial barrier plays a critical role in gut protection. Heat shock protein 70 (Hsp70) is an inducible cytoprotective molecule shown to protect the intestinal epithelium in adult models. To investigate the hypothesis that Hsp70 may be important for early protection of the immature intestine, Hsp70 expression was evaluated in intestine of immature rat pups. Data demonstrate that Hsp70 is induced by exposure to mothers milk. Hsp70 is found in mothers milk, and increased Hsp70 transcription is induced by mothers milk. This Hsp70 colocalizes with the tight junction protein ZO-1. Mothers milk-induced Hsp70 may contribute to maintenance of barrier function in the face of oxidant stress. Further understanding of the means by which mothers milk increases Hsp70 in the ileum will allow potential means of strengthening the intestinal barrier in at-risk preterm infants.


PLOS ONE | 2013

Erythropoietin Protects Epithelial Cells from Excessive Autophagy and Apoptosis in Experimental Neonatal Necrotizing Enterocolitis

Yueyue Yu; Sheng Ru Shiou; Yuee Guo; Maria Westerhoff; Jun Sun; Elaine O. Petrof; Erika C. Claud

Neonatal necrotizing enterocolitis (NEC) is a devastating gastrointestinal disease of preterm infants. Increased intestinal epithelium permeability is an early event in NEC pathogenesis. Autophagy and apoptosis are induced by multiple stress pathways which may impact the intestinal barrier, and they have been associated with pathogenesis of diverse gastrointestinal diseases including inflammatory bowel disease. Using both in vitro and in vivo models, this study investigates autophagy and apoptosis under experimental NEC stresses. Furthermore this study evaluates the effect of erythropoietin (Epo), a component of breast milk previously shown to decrease the incidence of NEC and to preserve intestinal barrier function, on intestinal autophagy and apoptosis. It was found that autophagy and apoptosis are both rapidly up regulated in NEC in vivo as indicated by increased expression of the autophagy markers Beclin 1 and LC3II, and by evidence of apoptosis by TUNEL and cleaved caspase-3 staining. In the rat NEC experimental model, autophagy preceded the onset of apoptosis in intestine. In vitro studies suggested that Epo supplementation significantly decreased both autophagy and apoptosis via the Akt/mTOR signaling pathway and the MAPK/ERK pathway respectively. These results suggest that Epo protects intestinal epithelium from excessive autophagy and apoptosis in experimental NEC.


PLOS ONE | 2013

Synergistic Protection of Combined Probiotic Conditioned Media against Neonatal Necrotizing Enterocolitis-Like Intestinal Injury

Sheng-Ru Shiou; Yueyue Yu; Yuee Guo; Shu-Mei He; C. Haikaeli Mziray-Andrew; Jeanette Hoenig; Jun Sun; Elaine O. Petrof; Erika C. Claud

Balance among the complex interactions of the gut microbial community is important for intestinal health. Probiotic bacteria can improve bacterial balance and have been used to treat gastrointestinal diseases. Neonatal necrotizing enterocolitis (NEC) is a life-threatening inflammatory bowel disorder primarily affecting premature infants. NEC is associated with extensive inflammatory NF-κB signaling activation as well as intestinal barrier disruption. Clinical studies have shown that probiotic administration may protect against NEC, however there are safety concerns associated with the ingestion of large bacterial loads in preterm infants. Bacteria-free conditioned media (CM) from certain probiotic organisms have been shown to retain bioactivity including anti-inflammatory and cytoprotective properties without the risks of live organisms. We hypothesized that the CM from Lactobacillus acidophilus (La), Bifidobacterium infantis (Bi), and Lactobacillus plantarum (Lp), used separately or together would protect against NEC. A rodent model with intestinal injury similar to NEC was used to study the effect of CM from Lp, La/Bi, and La/Bi/Lp on the pathophysiology of NEC. All the CM suppressed NF-κB activation via preserved IκBα expression and this protected IκBα was associated with decreased liver activity of the proteasome, which is the degrading machinery for IκBα. These CM effects also caused decreases in intestinal production of the pro-inflammatory cytokine TNF-α, a downstream target of the NF-κB pathway. Combined La/Bi and La/Bi/Lp CM in addition protected intestinal barrier function by maintaining tight junction protein ZO-1 levels and localization at the tight junction. Double combined La/Bi CM significantly reduced intestinal injury incidence from 43% to 28% and triple combined La/Bi/Lp CM further reduced intestinal injury incidence to 20%. Thus, this study demonstrates different protective mechanisms and synergistic bioactivity of the CM from different organisms in ameliorating NEC-like intestinal injury in an animal model.


Journal of Biological Chemistry | 2013

Oral Administration of Transforming Growth Factor-β1 (TGF-β1) Protects the Immature Gut from Injury via Smad Protein-dependent Suppression of Epithelial Nuclear Factor κB (NF-κB) Signaling and Proinflammatory Cytokine Production

Sheng Ru Shiou; Yueyue Yu; Yuee Guo; Maria Westerhoff; Elaine O. Petrof; Jun Sun; Erika C. Claud

Background: Intestinal production of TGF-β is decreased in neonatal necrotizing enterocolitis (NEC). Results: Oral administration of TGF-β (TGF-β1) inhibited inflammation in intestinal epithelium and systemic production of IL-6 and IFN-γ as well as NEC incidence in an animal model. Conclusion: Oral administration of TGF-β1 can compensate for TGF-β1 deficiency in gut diseases. Significance: TGF-β1 can potentially be used to prevent and treat gut diseases. Inflammatory immune responses play an important role in mucosal homeostasis and gut diseases. Nuclear factor κB (NF-κB), central to the proinflammatory cascade, is activated in necrotizing enterocolitis (NEC), a devastating condition of intestinal injury with extensive inflammation in premature infants. TGF-β is a strong immune suppressor and a factor in breast milk, which has been shown to be protective against NEC. In an NEC animal model, oral administration of the isoform TGF-β1 activated the downstream effector Smad2 in intestine and significantly reduced NEC incidence. In addition, TGF-β1 suppressed NF-κB activation, maintained levels of the NF-κB inhibitor IκBα in the intestinal epithelium, and systemically decreased serum levels of IL-6 and IFN-γ. The immature human fetal intestinal epithelial cell line H4 was used as a reductionistic model of the immature enterocyte to investigate mechanism. TGF-β1 pretreatment inhibited the TNF-α-induced IκBα phosphorylation that targets the IκBα protein for degradation and inhibited NF-κB activation. Chromatin immunoprecipitation (ChIP) assays demonstrated decreased NF-κB binding to the promoters of IL-6, IL-8, and IκBα in response to TNF-α with TGF-β1 pretreatment. These TGF-β1 effects appear to be mediated through the canonical Smad pathway as silencing of the TGF-β central mediator Smad4 resulted in loss of the TGF-β1 effects. Thus, TGF-β1 is capable of eliciting anti-inflammatory effects by inhibiting NF-κB specifically in the intestinal epithelium as well as by decreasing systemic IL-6 and IFN-γ levels. Oral administration of TGF-β1 therefore can potentially be used to protect against gastrointestinal diseases.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2016

Preterm infant gut microbiota affects intestinal epithelial development in a humanized microbiome gnotobiotic mouse model

Yueyue Yu; Jun Sun; Elaine O. Petrof; Erika C. Claud

Development of the infant small intestine is influenced by bacterial colonization. To promote establishment of optimal microbial communities in preterm infants, knowledge of the beneficial functions of the early gut microbiota on intestinal development is needed. The purpose of this study was to investigate the impact of early preterm infant microbiota on host gut development using a gnotobiotic mouse model. Histological assessment of intestinal development was performed. The differentiation of four epithelial cell lineages (enterocytes, goblet cells, Paneth cells, enteroendocrine cells) and tight junction (TJ) formation was examined. Using weight gain as a surrogate marker for health, we found that early microbiota from a preterm infant with normal weight gain (MPI-H) induced increased villus height and crypt depth, increased cell proliferation, increased numbers of goblet cells and Paneth cells, and enhanced TJs compared with the changes induced by early microbiota from a poor weight gain preterm infant (MPI-L). Laser capture microdissection (LCM) plus qRT-PCR further revealed, in MPI-H mice, a higher expression of stem cell marker Lgr5 and Paneth cell markers Lyz1 and Cryptdin5 in crypt populations, along with higher expression of the goblet cell and mature enterocyte marker Muc3 in villus populations. In contrast, MPI-L microbiota failed to induce the aforementioned changes and presented intestinal characteristics comparable to a germ-free host. Our data demonstrate that microbial communities have differential effects on intestinal development. Future studies to identify pioneer settlers in neonatal microbial communities necessary to induce maturation may provide new insights for preterm infant microbial ecosystem therapeutics.


PLOS ONE | 2015

Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model.

Yueyue Yu; Yuee Guo; Yunwei Wang; Eugene B. Chang; Erika C. Claud

Background and Aims It is known that postnatal functional maturation of the small intestine is facilitated by microbial colonization of the gut. Preterm infants exhibit defects in gut maturation, weak innate immunity against intestinal infection and increased susceptibility to inflammatory disorders, all of which may be related to the inappropriate microbial colonization of their immature intestines. The earliest microbes to colonize the preterm infant gut encounter a naïve, immature intestine. Thus this earliest microbiota potentially has the greatest opportunity to fundamentally influence intestinal development and immune function. The aim of this study was to characterize the effect of early microbial colonization on global gene expression in the distal small intestine during postnatal gut development. Methods Gnotobiotic mouse models with experimental colonization by early (prior to two weeks of life) intestinal microbiota from preterm human infants were utilized. Microarray analysis was used to assess global gene expression in the intestinal epithelium. Results and Conclusion Multiple intestinal genes involved in metabolism, cell cycle regulation, cell-cell or cell-extracellular matrix communication, and immune function are developmental- and intestinal microbiota- regulated. Using a humanized gnotobiotic mouse model, we demonstrate that certain early preterm infant microbiota from prior to 2 weeks of life specifically induce increased NF-κB activation and a phenotype of increased inflammation whereas other preterm microbiota specifically induce decreased NF-κB activation. These fundamental differences correlate with altered clinical outcomes and suggest the existence of optimal early microbial communities to improve health outcomes.


Scientific Reports | 2018

Effects of Intestinal Microbiota on Brain Development in Humanized Gnotobiotic Mice

Jing Lu; Yueyue Yu; Joanne E. Cluette-Brown; Camilia R. Martin; Erika C. Claud

Poor growth in the Neonatal Intensive Care Unit is associated with an increased risk for poor neurodevelopmental outcomes for preterm infants, however the mechanism is unclear. The microbiome has increasingly been recognized as a modifiable environmental factor to influence host development. Here we explore the hypothesis that the microbiome influences both growth phenotype and brain development. A germ free mouse transfaunation model was used to examine the effects of preterm infant microbiotas known to induce either high growth or low growth phenotypes on postnatal brain development. The microbiome which induced the low growth phenotype was associated with decreases in the neuronal markers NeuN and neurofilament-L as well as the myelination marker MBP when compared to the microbiome associated with the high growth phenotype. Additionally, poor growth phenotype-associated microbiota was associated with increased neuroinflammation marked by increased Nos1, as well as alteration in IGF-1 pathway including decreased circulating and brain IGF-1, decreased circulating IGFBP3, and increased Igfbp3 brain mRNA expression. This study suggests that growth-associated microbiota can influence early neuron and oligodendrocyte development and that this effect may be mediated by effects on neuroinflammation and circulating IGF-1.


Biomolecules | 2014

Differential expression of 26S proteasome subunits and functional activity during neonatal development.

Erika C. Claud; Julie A.K. McDonald; Shu-Mei He; Yueyue Yu; Lily Duong; Jun Sun; Elaine O. Petrof

Proteasomes regulate many essential cellular processes by degrading intracellular proteins. While aging is known to be associated with dysfunction of the proteasome, there are few reports detailing activity and function of proteasomes in the early stages of life. To elucidate the function and development of mammalian proteasomes, 26S proteasomes were affinity-purified from rat intestine, spleen and liver. The developmental expression of core, regulatory and immunoproteasome subunits was analyzed by immunoblotting and reverse-transcriptase PCR of mRNA subunits, and proteasome catalytic function was determined by fluorogenic enzymatic assays. The expression of core (β2, β5, α7 and β1) and regulatory (Rpt5) subunits was found to be present at low levels at birth and increased over time particularly at weaning. In contrast, while gradual developmental progression of proteasome structure was also seen with the immunoproteasome subunits (β1i, β5i, and β2i), these were not present at birth. Our studies demonstrate a developmental pattern to 26S proteasome activity and subunit expression, with low levels of core proteasome components and absence of immunoproteasomes at birth followed by increases at later developmental stages. This correlates with findings from other studies of a developmental hyporesponsiveness of the adaptive immune system to allow establishment of microbial colonization immediately after birth.

Collaboration


Dive into the eyue Yu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Sun

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Yuee Guo

University of Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jing Lu

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexander Drobyshevsky

NorthShore University HealthSystem

View shared research outputs
Researchain Logo
Decentralizing Knowledge