Yuezhao Wang
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yuezhao Wang.
Systematic Biology | 2011
Matthew C. Brandley; Yuezhao Wang; Xianguang Guo; Adrián Nieto-Montes de Oca; Manuel Feria-Ortiz; Tsutomu Hikida; Hidetoshi Ota
Identifying and dating historical biological events is a fundamental goal of evolutionary biology, and recent analytical advances permit the modeling of factors known to affect both the accuracy and the precision of molecular date estimates. As the use of multilocus data sets becomes increasingly routine, it becomes more important to evaluate the potentially confounding effects of rate heterogeneity both within (e.g., codon positions) and among loci when estimating divergence times. Here, using Plestiodon lizards as a test case, we examine the effects of accommodating rate heterogeneity among data partitions on divergence time estimation. Plestiodon inhabits both East Asia and North America, yet both the geographic origin of the genus and timing of dispersal between the continents have been debated. For each of the eight independently evolving loci and a combined data set, we conduct single model and partitioned analyses. We found that extreme saturation has obscured the underlying rate of evolution in the mitochondrial DNA (mtDNA), resulting in severe underestimation of the rate in this locus. As a result, the age of the crown Plestiodon clade was overestimated by 15-17 Myr by the unpartitioned analysis of the combined loci data. However, the application of partition-specific models to the combined data resulted in ages that were fully congruent with those inferred by the individual nuclear loci. Although partitioning improved divergence date estimates of the mtDNA-only analysis, the ages were nonetheless overestimated, thus indicating an inadequacy of our current models to capture the complex nature of mtDNA evolution in over large time scales. Finally, the statistically incongruent age distributions inferred by the partitioned and unpartitioned analyses of the combined data support mutually exclusive hypotheses of the timing of intercontinental dispersal of Plestiodon from Asia to North America. Analyses that best capture the rate of evolution in the combined data set infer that this exchange occurred via Beringia ∼18.0-30 Ma.
Molecular Phylogenetics and Evolution | 2003
Junfeng Pang; Yuezhao Wang; Yang Zhong; A. Rus Hoelzel; Theodore J. Papenfuss; Xiaomao Zeng; Natalia B. Ananjeva; Ya-Ping Zhang
We investigated the phylogenetic relationships among most Chinese species of lizards in the genus Phrynocephalus (118 individuals collected from 56 populations of 14 well-defined species and several unidentified specimens) using four mitochondrial gene fragments (12S rRNA, 16S rRNA, cytochrome b, and ND4-tRNA(LEU)). The partition-homogeneity tests indicated that the combined dataset was homogeneous, and maximum-parsimony (MP), neighbor-joining (NJ), maximum-likelihood (ML) and Bayesian (BI) analyses were performed on this combined dataset (49 haplotypes including outgroups for 2058bp in total). The maximum-parsimony analysis resulted in 24 equally parsimonious trees, and their strict consensus tree shows that there are two major clades representing the Chinese Phrynocephalus species: the viviparous group (Clade A) and the oviparous group (Clade B). The trees derived from Bayesian, ML, and NJ analyses were topologically identical to the MP analysis except for the position of P. mystaceus. All analyses left the nodes for the oviparous group, the most basal clade within the oviparous group, and P. mystaceus unresolved. The phylogenies further suggest that the monophyly of the viviparous species may have resulted from vicariance, while recent dispersal may have been important in generating the pattern of variation among the oviparous species.
Science | 2014
J. Even; A. Yakushev; Christoph E. Düllmann; H. Haba; Masato Asai; Tetsuya Sato; H. Brand; A. Di Nitto; R. Eichler; Fangli Fan; Willi Hartmann; M. Huang; E. Jäger; Daiya Kaji; J. Kanaya; Y. Kaneya; J. Khuyagbaatar; B. Kindler; J. V. Kratz; J. Krier; Yuki Kudou; N. Kurz; B. Lommel; Sunao Miyashita; Kosuke Morita; Masashi Murakami; Yuichiro Nagame; Heino Nitsche; K. Ooe; Z. H. Qin
A carbonyl compound that tips the scales Life is short for the heaviest elements. They emerge from high-energy nuclear collisions with scant time for detection before they break up into lighter atoms. Even et al. report that even a few seconds is long enough for carbon to bond to the 106th element, seaborgium (see the Perspective by Loveland). The authors used a custom apparatus to direct the freshly made atoms out of the hot collision environment and through a stream of carbon monoxide and helium. They compared the detected products with theoretical modeling results and conclude that hexacarbonyl Sg(CO)6 was the most likely structural formula. Science, this issue p. 1491; see also p. 1451 A special apparatus enables synthesis of a compound with carbon bonds to a short-lived element produced via nuclear reaction. [Also see Perspective by Loveland] Experimental investigations of transactinoide elements provide benchmark results for chemical theory and probe the predictive power of trends in the periodic table. So far, in gas-phase chemical reactions, simple inorganic compounds with the transactinoide in its highest oxidation state have been synthesized. Single-atom production rates, short half-lives, and harsh experimental conditions limited the number of experimentally accessible compounds. We applied a gas-phase carbonylation technique previously tested on short-lived molybdenum (Mo) and tungsten (W) isotopes to the preparation of a carbonyl complex of seaborgium, the 106th element. The volatile seaborgium complex showed the same volatility and reactivity with a silicon dioxide surface as those of the hexacarbonyl complexes of the lighter homologs Mo and W. Comparison of the product’s adsorption enthalpy with theoretical predictions and data for the lighter congeners supported a Sg(CO)6 formulation.
Molecular Phylogenetics and Evolution | 2011
Xianguang Guo; Xin Dai; Dali Chen; Theodore J. Papenfuss; Natalia B. Ananjeva; Daniel Melnikov; Yuezhao Wang
Eremias, or racerunners, is a widespread lacertid genus occurring in China, Mongolia, Korea, Central Asia, Southwest Asia and Southeast Europe. It has been through a series of taxonomic revisions, but the phylogenetic relationships among the species and subgenera remain unclear. In this study, a frequently studied region of the mitochondrial 16S rRNA was used to (i) reassess the phylogenetic relationships of some Eremias species, (ii) test if the viviparous species form a monophyletic group, and (iii) estimate divergence time among lineages using a Bayesian relaxed molecular-clock approach. The resulting phylogeny supports monophyly of Eremias sensu Szczerbak and a clade comprising Eremias, Acanthodactylus and Latastia. An earlier finding demonstrating monophyly of the subgenus Pareremias is corroborated, with Eremias argus being the sister taxon to Eremias brenchleyi. We present the first evidence that viviparous species form a monophyletic group. In addition, Eremias przewalskii is nested within Eremias multiocellata, suggesting that the latter is likely a paraphyletic species or a species complex. Eremias acutirostris and Eremias persica form a clade that is closely related to the subgenus Pareremias. However, the subgenera Aspidorhinus, Scapteira, and Rhabderemias seem not to be monophyletic, respectively. The Bayesian divergence-time estimation suggests that Eremias originated at about 9.9 million years ago (with the 95% confidence interval ranging from 7.6 to 12 Ma), and diversified from Late Miocene to Pleistocene. Specifically, the divergence time of the subgenus Pareremias was dated to about 6.3 million years ago (with the 95% confidence interval ranging from 5.3 to 8.5 Ma), which suggests that the diversification of this subgenus might be correlated with the evolution of an East Asian monsoon climate triggered by the rapid uplift of the Tibetan Plateau approximately 8 Ma.
Biology Letters | 2006
J. Robert Macey; James A. Schulte; Jared L. Strasburg; Jennifer A. Brisson; Allan Larson; Natalia B. Ananjeva; Yuezhao Wang; James F. Parham; Theodore J. Papenfuss
Darwin first recognized the importance of episodic intercontinental dispersal in the establishment of worldwide biotic diversity. Faunal exchange across the Bering Land Bridge is a major example of such dispersal. Here, we demonstrate with mitochondrial DNA evidence that three independent dispersal events from Asia to North America are the source for almost all lizard taxa found in continental eastern North America. Two other dispersal events across Beringia account for observed diversity among North American ranid frogs, one of the most species-rich groups of frogs in eastern North America. The contribution of faunal elements from Asia via dispersal across Beringia is a dominant theme in the historical assembly of the eastern North American herpetofauna.
Zoologica Scripta | 2010
Yunke Wu; Yuezhao Wang; Ke Jiang; Xin Chen; James Hanken
Wu, Y., Wang, Y., Jiang, K., Chen, X. & Hanken, J. (2009). Homoplastic evolution of external colouration in Asian stout newts (Pachytriton) inferred from molecular phylogeny.—Zoologica Scripta, 39, 9–22.
PLOS ONE | 2013
Yong Huang; Xianguang Guo; Simon Y. W. Ho; Haitao Shi; Jia-Tang Li; Jun Li; Bo Cai; Yuezhao Wang
The Oriental garden lizard (Calotes versicolor) is one of the few non-gekkonid lizards that are geographically widespread in the tropics. We investigated its population dynamics on Hainan Island and the adjacent mainland of China and Vietnam, focusing on the impact of cyclic upheaval and submergence of land bridges during the Pleistocene. Our Bayesian phylogenetic analysis reveals two mitochondrial lineages, A and B, which are estimated to have coalesced about 0.26 million years ago (95% credibility interval: 0.05–0.61 million years ago). Lineage A contains individuals mainly from central and southern Wuzhi Mountain on Hainan Island, whereas lineage B mainly comprises individuals from other sites on the island plus the adjacent mainland. The estimated coalescence times within lineages A (0.05 million years ago) and B (0.13 million years ago) fall within a period of cyclical land-bridge formation and disappearance in the Pleistocene. A spatial analysis of molecular variance identified two distinct population groupings: I, primarily containing lineage A, and II, mainly consisting of lineage B. However, haplotypes from lineages A and B occur sympatrically, suggesting that gene flow is ongoing. Neither Wuzhi Mountain nor Qiongzhou Strait and Gulf of Tonkin act as barriers to gene flow among C. versicolor populations. Analyses of the data using mismatch distributions and extended Bayesian skyline plots provide evidence of a relatively stable population size through time for Group I, and moderate population expansions and contractions during the end of the Pleistocene for Group II. We conclude that the phylogeographical patterns of C. versicolor are the combined product of Pleistocene sea-level oscillations and nonphysical barriers to gene flow.
PLOS ONE | 2010
Matthew C. Brandley; Yuezhao Wang; Xianguang Guo; Adrián Nieto-Montes de Oca; Manuel Ortiz; Tsutomu Hikida; Hidetoshi Ota
Oceanic islands are well known for harboring diverse species assemblages and are frequently the basis of research on adaptive radiation and neoendemism. However, a commonly overlooked role of some islands is their function in preserving ancient lineages that have become extinct everywhere else (paleoendemism). The island archipelago of Bermuda is home to a single species of extant terrestrial vertebrate, the endemic skink Plestiodon (formerly Eumeces) longirostris. The presence of this species is surprising because Bermuda is an isolated, relatively young oceanic island approximately 1000 km from the eastern United States. Here, we apply Bayesian phylogenetic analyses using a relaxed molecular clock to demonstrate that the island of Bermuda, although no older than two million years, is home to the only extant representative of one of the earliest mainland North American Plestiodon lineages, which diverged from its closest living relatives 11.5 to 19.8 million years ago. This implies that, within a short geological time frame, mainland North American ancestors of P. longirostris colonized the recently emergent Bermuda and the entire lineage subsequently vanished from the mainland. Thus, our analyses reveal that Bermuda is an example of a “life raft” preserving millions of years of unique evolutionary history, now at the brink of extinction. Threats such as habitat destruction, littering, and non-native species have severely reduced the population size of this highly endangered lizard.
Molecular Phylogenetics and Evolution | 2013
Yunke Wu; Yuezhao Wang; Ke Jiang; James Hanken
Despite extensive focus on the genetic legacy of Pleistocene glaciation, impacts of earlier climatic change on biodiversity are poorly understood. Because amphibians are highly sensitive to variations in precipitation and temperature, we use a genus of Chinese montane salamanders (Salamandridae: Pachytriton) to study paleoclimatic change in East Asia, which experienced intensification of its monsoon circulation in the late Miocene associated with subsequent Pliocene warming. Using both nuclear and mitochondrial DNA sequences, we reconstruct the species tree under a coalescent model and demonstrate that all major lineages originated before the Quaternary. Initial speciation within the genus occurred after the summer monsoon entered a stage of substantial intensification. Heavy summer precipitation established temporary water connectivity through overflows between adjacent stream systems, which may facilitate geographic range expansion by aquatic species such as Pachytriton. Species were formed in allopatry likely through vicariant isolation during or after range expansion. To evaluate the influence of Pliocene warming on these cold-adapted salamanders, we construct a novel temperature buffer-zone model, which suggests widespread physiological stress or even extinction during the warming period. A significant deceleration of species accumulation rate is consistent with Pliocene range contraction, which affected P. granulosus and P. archospotus the most because they lack large temperature buffer zones. In contrast, demographic growth occurred in species for which refugia persist. The buffer-zone model reveals the Huangshan Mountain as a potential climatic refugium, which is similar to that found for other East Asian organisms. Our approach can incorporate future climatic data to evaluate the potential impact of ongoing global warming on montane species (particularly amphibians) and to predict possible population declines.
Copeia | 2001
Jinzhong Fu; Yuezhao Wang; Xiaomao Zeng; Zhijun Liu; Yuchi Zheng
Abstract Using mitochondrial cytochrome b and 16s gene sequences, we examined the genetic diversity of eastern Batrachuperus distributed in China along the eastern slopes of the Tibet Plateau. The group showed a moderate pairwise divergence compared to other salamander groups. The highest cytochrome b divergence is 10.07%. A phylogenetic analysis of the mitochondrial haplotypes revealed several evolutionarily independent lineages, including the Hongya and Pengxian populations of Batrachuperus tibetanus that probably represent undescribed species. The genetic divergence of Batrachuperus is clearly much higher than currently perceived. The distribution patterns of the mitochondrial haplotypes of the northwestern populations indicated that the dispersal or divergence of Batrachuperus might not be confined to river valleys, although all species in the genus are fully aquatic.