Yufeng Ma
Nanjing Forestry University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Yufeng Ma.
Journal of Thermal Analysis and Calorimetry | 2013
Yufeng Ma; Jifu Wang; Yuzhi Xu; Chunpeng Wang; Fuxiang Chu
The high solid resol phenolic resin was prepared via step polymerization of formaldehyde, paraformaldehyde, and phenol using sodium hydroxide and calcium oxide as catalysts, and employed to prepare the phenolic foams (PFs) by the introduction of retardant additives including eco-friendly halogen-free flame retardants (ammonium polyphosphate), char-forming agents (pentaerythritol), and synergists (zinc oxide, molybdenum trioxide, cuprous chloride, and stannous chloride). The effects of these additives on flame retardancy, heat resistance, and fire properties of flame-retardant composite phenolic foams (FRCPFs) were evaluated by limiting oxygen index (LOI) tests, thermogravimetric analyzer, and cone calorimeter tests. It was found that the flame retardan significantly increased the LOIs of FRCPFs. Compared with PF, heat release rate, total heat release, effective heat of combustion, production or yield of carbon monoxide (COP or COY), and Oxygen consumption (O2C) of FRCPFs all remarkably decreased. However specific extinction area and total smoke release significantly increased, which agreed with the gas-phase mechanism of the flame-retardant system. The results indicate that FRCPFs have excellent fire-retardant performance and less smoke release. APP/PER/ZnO is shown to be better flame-retardant system for PFs.
Polish Journal of Chemical Technology | 2017
Yufeng Ma; Chunpeng Wang; Fuxiang Chu
Abstract Eucalyptus fibers were modified with N-β(aminoethyl)-γ-aminopropyl trimethoxy silane to research the fiber surface’s changes and the influence of the treatment on the mechanical properties, flame resistance, thermal conductivity and microstructure of eucalyptus fiber composite phenolic foams (EFCPFs). The results showed that the partial of hemicelluloses, waxes, lignin and impurities from the fiber surface were dissolved and removed. Compared with untreated EFCPFs, the mechanical properties of treated EFCPFs were increased dramatically; The size of cells was smaller and the distribution was more uniform; The thermal conductivities were basically reduced; Especially the ratio of mass loss decreased obviously. However limited oxygen indexs (LOIs) reduced. And the mechanical properties and LOIs of EFCPFs were basically decreased with the increase of eucalyptus fibers. By comprehensive analysis, the results showed that the interfacial compatibility has been significantly improved between eucalyptus fibers and phenolic resin. And the suitable dosage of eucalyptus fibers was about 5%.
Polymers | 2018
Yufeng Ma; Xuanang Gong; Chuhao Liao; Xiang Geng; Chunpeng Wang; Fuxiang Chu
In order to improve the performance of phenolic foam, an additive compound of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) and Itaconic acid (ITA) were attached on the backbone of ethyl cellulose (EC) and obtained DOPO-ITA modified EC (DIMEC), which was used to modify phenolic resin and composite phenolic foams (CPFs). The structures of DOPO-ITA were verified by Fourier transform infrared spectroscopy (FT-IR) and nuclear magnetic resonance (1H NMR). The molecular structure and microstructure were characterized by FT-IR spectra and SEM, respectively. Compared with EC, the crystallinity of DIMEC was dramatically decreased, and the diffraction peak positions were basically unchanged. Additionally, thermal stability was decreased and Ti decreased by 24 °C. The residual carbon (600 °C) was increased by 25.7%. With the dosage of DIMEC/P increased, the Ea values of DIMEC composite phenolic resins were increased gradually. The reaction orders were all non-integers. Compared with PF, the mechanical properties, flame retardancy, and the residual carbon (800 °C) of CPFs were increased. The cell size of CPFs was less and the cell distribution was relatively regular. By comprehensive analysis, the suitable dosage of DIMEC/P was no more than 15%.
Polish Journal of Chemical Technology | 2018
Yufeng Ma; Xiang Geng; Xi Zhang; Chunpeng Wang; Fuxiang Chu
Abstract A novel 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) graft γ-amino propyl triethoxy silane (KH550) was synthesized and introduced on the surface of wood fiber. Finally DOPO-g-KH550 treated wood fiber (DKTWF) was used to prepare DKTWF composite phenolic foams (DKTWFCPF). The structures of DOPO-g- KH550 was acknowledged by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H-NMR). The structures of DKTWF were confirmed by FT-IR. Compared with wood fiber, the diffraction peaks’ position was basically unchanged, but the crystallinity was slightly increased and thermal stability were dramatically improved, T5% and Tmax increased by 21.9o and 36.1o respectively. But the char yield (800o) was slightly reduced. With the dosage of DKWF, there were different degrees of improvement including the mechanical properties, flame retardancy and microstructure of DKTWFCPF. Comprehensive analysis, the interfacial compatibility was significantly improved between DKTWF and phenolic resin, and the suitable content of DKTWF was 4%.
Industrial Crops and Products | 2013
Wei Zhang; Yufeng Ma; Chunpeng Wang; Shouhai Li; Mingming Zhang; Fuxiang Chu
International Journal of Adhesion and Adhesives | 2013
Wei Zhang; Yufeng Ma; Yuzhi Xu; Chunpeng Wang; Fuxiang Chu
Archive | 2011
Fuxiang Chu; Chunpeng Wang; Shouhai Li; Wei Zhang; Yufeng Ma; Yuzhi Xu; Liwei Jin; Linwu Zhao
Archive | 2012
Fuxiang Chu; Chunpeng Wang; Shouhai Li; Wei Zhang; Yufeng Ma; Yuzhi Xu; Liwei Jin; Linwu Zhao
Journal of Applied Polymer Science | 2013
Yufeng Ma; Wei Zhang; Chunpeng Wang; Yuzhi Xu; Fuxiang Chu
Bioresources | 2017
Yufeng Ma; Chunpeng Wang; Fuxiang Chu