Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yugu Li is active.

Publication


Featured researches published by Yugu Li.


Environmental Toxicology and Pharmacology | 2014

Evaluation of deoxynivalenol-induced toxic effects on DF-1 cells in vitro: cell-cycle arrest, oxidative stress, and apoptosis.

Daotong Li; Yaqiong Ye; Shaoqing Lin; Li Deng; Xiaolong Fan; Yuan Zhang; Xianbo Deng; Yugu Li; Haikuo Yan; Yongjiang Ma

Deoxynivalenol (DON) is one of the most common mycotoxin contaminants of raw and processed cereal food. Lymphoid cells and fibroblasts are specified to be the most DON-sensitive cell types. In this study, we investigated the toxic effects of DON in chicken embryo fibroblast DF-1 cells. The results showed that DON significantly inhibited DF-1 cell viability in both a time- and concentration-dependent manner. DON could also inhibit the proliferation of DF-1 cells through G2/M phase arrest in the cell cycle progression. Moreover, oxidative stress induced by DON was indicated by increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), and decreased levels of glutathione (GSH) and superoxide dismutase (SOD). In addition, DON could also cause mitochondrial damage by decreasing the mitochondrial membrane potential and induce apoptosis accompanied with the up-regulation of apoptosis-related genes including Caspase-3, Caspase-8, Caspase-9, and AIFM1. These results suggested that DON could cause cell cycle arrest, oxidative stress, and apoptosis in DF-1 cells.


Environmental Toxicology and Pharmacology | 2014

Deoxynivalenol induces apoptosis in mouse thymic epithelial cells through mitochondria-mediated pathway

Daotong Li; Haoran Ma; Yaqiong Ye; Changyun Ji; Xiaohong Tang; Dan Ouyang; Jian Chen; Yugu Li; Yongjiang Ma

Deoxynivalenol (DON) is a mycotoxin produced as a secondary metabolite by fungal species. In this report, we investigated the apoptotic effect of DON in mouse thymic epithelial cell line 1 (MTEC1). MTEC1 cell apoptosis induced by DON was confirmed by nuclei morphology change, TUNEL positive staining, annexin V/propidium iodide positive staining and increased protein levels of caspase-3, caspase-8, caspase-9 and poly(ADP-ribose) polymerase (PARP). The effects of DON on reactive oxygen species (ROS) levels and mitochondrial membrane potential were investigated via fluorescence microscope and flow cytometry, respectively. In addition, DON could significantly increase the protein levels of p53 and Bax/Bcl-2 ratio in MTEC1 cells. Taken together, our results suggest that DON causes the activation of p53, increased levels of ROS and the induction of mitochondrial dysfunction, which may contribute to DON-induced apoptosis in MTEC1 cells.


Acta Biochimica et Biophysica Sinica | 2015

MicroRNA-125b-5p inhibits proliferation and promotes adipogenic differentiation in 3T3-L1 preadipocytes.

Dan Ouyang; Yaqiong Ye; Dongguang Guo; Xiaofang Yu; Jian Chen; Junjie Qi; Xiaotong Tan; Yuan Zhang; Yongjiang Ma; Yugu Li

Previous evidence has indicated that the microRNA-125b (miR-125b) family plays important roles in the regulation of cancer cell growth, development, differentiation, and apoptosis. However, whether they contribute to the process of adipocyte differentiation remains unclear. In the present study, we revealed that the expression level of miR-125b-5p, a member of miR-125b family, was dramatically up-regulated during differentiation of 3T3-L1 preadipocyte into mature adipocyte. Supplement of miR-125b-5p into 3T3-L1 cells promoted adipogenic differentiation as evidenced by increased lipid droplets and mRNA levels of adipocyte-specific molecular markers, including peroxisome proliferators-activated receptor γ, CCAAT/enhancer-binding protein α, fatty acid-binding protein 4, and lipoprotein lipase, and by triglyceride accumulation. CCK-8 assay showed that miR-125b-5p supplementation significantly inhibited cell proliferation. Flow cytometry analysis showed that miR-125b-5p impaired G1/S phase transition as well as the mRNA and protein expression of G1/S-related genes, such as Cyclin D2, Cyclin D3, and CDK4. Nevertheless, it had no effect on apoptosis. Additionally, by target gene prediction, we demonstrated that smad4 may be a potential target of miR-125b-5p in mouse 3T3-L1 preadipocytes, accounting for some of miR-125b-5ps functions. Taken together, these data indicated that miR-125b-5p may serve as an important positive regulator in adipocyte differentiation, at least partially through down-regulating smad4.


Environmental Toxicology and Pharmacology | 2013

Gene expression profiling analysis of deoxynivalenol-induced inhibition of mouse thymic epithelial cell proliferation.

Daotong Li; Yaqiong Ye; Li Deng; Haoran Ma; Xiaolong Fan; Yuan Zhang; Haikuo Yan; Xianbo Deng; Yugu Li; Yongjiang Ma

Deoxynivalenol (DON) is a mycotoxin produced as a secondary metabolite by fungal species. It has been shown that DON has serious toxic effects on many kinds of immune cells. However, the toxic effects on thymic epithelial cells were poorly understood. The purpose of this study is to investigate the gene expression differences for the DON-induced inhibition on the proliferation of mouse thymic epithelial cell line 1 (MTEC1). After the experiments of cell viability, morphological investigation and cell cycle analysis, microarray analysis was carried out. The differentially expressed genes belong to a variety of functional categories, including genes involved in metabolic process, cell cycle, oxidation-reduction process and apoptosis. Our results provide molecular insights into the gene expression differences of DON-induced toxic effects and suggest that p53 signaling pathway may play an important role in the inhibition of MTEC1 cell proliferation.


Acta Biochimica et Biophysica Sinica | 2016

MicroRNA-181a-5p enhances cell proliferation in medullary thymic epithelial cells via regulating TGF-β signaling

Dongguang Guo; Yaqiong Ye; Junjie Qi; Lihua Zhang; Lifeng Xu; Xiaotong Tan; Xiaofang Yu; Qihong Liu; Jilong Liu; Yuan Zhang; Yongjiang Ma; Yugu Li

The expression profiles of miRNAs in thymus tissues from mice of different age have been demonstrated in our previous study. After an integrated analysis of the miRNA expression profiles, we demonstrated that the expression of miR-181a-5p was significantly decreased in thymic epithelial cells (TECs) from 10- to 19-month-old mice when compared with that in TECs from 1-month-old mice by quantitative reverse transcriptase polymerase chain reaction. We hypothesized that miR-181a-5p in TECs might be associated with the age-related thymus involution through regulating some genes or signaling pathway. To test this hypothesis, the mouse medullary thymic epithelial cells (MTEC1) were used. Transfection with miR-181a-5p mimic promoted the proliferation of MTEC1 cells, but did not affect apoptosis. The effect was reversed when the expression of miR-181a-5p was suppressed in MTEC1 cells. Furthermore, the transforming growth factor beta receptor I (Tgfbr1) was confirmed as a direct target of miR-181a-5p by luciferase assay. Moreover, it was found that overexpression of miR-181a-5p down-regulated the phosphorylation of Smad3 and blocked the activation of the transforming growth factor beta signaling. Nevertheless, an inversely correlation was observed between the expression of Tgfbr1 and miR-181a-5p in TECs derived from mice of different age. Collectively, we provide evidence that miR-181a-5p may be an important endogenous regulator in the proliferation of TECs, and the expression levels of miR-181a-5p in TECs may be associated with the age-related thymus involution.


Gene | 2014

MicroRNA expression in the aging mouse thymus.

Yaqiong Ye; Daotong Li; Dan Ouyang; Li Deng; Yuan Zhang; Yongjiang Ma; Yugu Li

MicroRNAs (miRNAs) have been implicated in the process of aging in many model organisms, such as Caenorhabditis elegans, and in many organs, such as the mouse lung and human epididymis. However, the role of miRNAs in the thymus tissues of the aging mouse remains unclear. To address this question, we investigated the miRNA expression profiles in the thymuses of 1-, 10- and 19-month-old mice using miRNA array and qRT-PCR assays. A total of 223 mouse miRNAs were screened, and the expression levels of those miRNAs exhibited gradual increases and decreases over the course of thymus aging. Fifty miRNAs in the 10-month-old thymus and 81 miRNAs in the 19-month-old thymus were defined as differentially expressed miRNAs (p<0.05) in comparison with their levels in the 1-month-old mouse, and approximately one-third of these miRNAs were grouped within 11 miRNA clusters. Each miRNA cluster contained 2 to 5 miRNA genes, and most of the cluster members displayed similar expression patterns, being either increased or decreased. In addition, Ingenuity Pathway Analysis (IPA) software and the IPA database were used to analyze the 12 miRNAs that exhibited significant expression changes, revealing that as many as 15 pathways may be involved. Thus, our current study determined the expression profiles of miRNAs in the mouse thymus during the process of aging. The results suggested that these miRNAs could become meaningful biomarkers for studying thymus aging and that the aging-related alternations in miRNA expression may be involved in the regulation of cell proliferation, apoptosis, development and carcinogenesis/tumorigenesis.


BioMed Research International | 2014

Analysis of Differentially Expressed Genes and Signaling Pathways Related to Intramuscular Fat Deposition in Skeletal Muscle of Sex-Linked Dwarf Chickens

Yaqiong Ye; Shumao Lin; Heping Mu; Xiaohong Tang; Yangdan Ou; Jian Chen; Yongjiang Ma; Yugu Li

Intramuscular fat (IMF) plays an important role in meat quality. However, the molecular mechanisms underlying IMF deposition in skeletal muscle have not been addressed for the sex-linked dwarf (SLD) chicken. In this study, potential candidate genes and signaling pathways related to IMF deposition in chicken leg muscle tissue were characterized using gene expression profiling of both 7-week-old SLD and normal chickens. A total of 173 differentially expressed genes (DEGs) were identified between the two breeds. Subsequently, 6 DEGs related to lipid metabolism or muscle development were verified in each breed based on gene ontology (GO) analysis. In addition, KEGG pathway analysis of DEGs indicated that some of them (GHR, SOCS3, and IGF2BP3) participate in adipocytokine and insulin signaling pathways. To investigate the role of the above signaling pathways in IMF deposition, the gene expression of pathway factors and other downstream genes were measured by using qRT-PCR and Western blot analyses. Collectively, the results identified potential candidate genes related to IMF deposition and suggested that IMF deposition in skeletal muscle of SLD chicken is regulated partially by pathways of adipocytokine and insulin and other downstream signaling pathways (TGF-β/SMAD3 and Wnt/catenin-β pathway).


Acta Biochimica et Biophysica Sinica | 2017

Age and sex differences in microRNAs expression during the process of thymus aging

Dongguang Guo; Yaqiong Ye; Junjie Qi; Xiaotong Tan; Yuan Zhang; Yongjiang Ma; Yugu Li

The gender-biased thymus involution and the importance of microRNAs (miRNAs, miRs) expression in modulating the thymus development have been reported in many studies. However, how males and females differ in so many ways in thymus involution remains unclear. To address this question, we investigated the miRNA expression profiles in both untreated 3- and 12-month-old female and male mice thymuses. The results showed that 7 and 18 miRNAs were defined as the sex- and age-specific miRNAs, respectively. The expression of miR-181c-5p, miR-20b-5p, miR-98b-5p, miR-329-3p, miR-341-5p, and miR-2137 showed significant age-difference in mice thymus by quantitative polymerase chain reaction. High expression levels of miR-2137 were detected in mice thymic epithelial cells and gradually increased during the process of thymus aging. MiR-27b-3p and miR-378a-3p of the female-biased miRNAs were confirmed as the sex- and estrogen-responsive miRNAs in mice thymus in vivo. Their potential target genes and the pathway were identified by the online software. Possible regulation roles of sex- and age-specific miRNA expression during the process of thymus aging were discussed. Our results suggested that these miRNAs may be potential biomarkers for the study of sex- and age-specific thymus aging and involution.


Acta Biochimica et Biophysica Sinica | 2016

MicroRNA-195a-5p inhibits mouse medullary thymic epithelial cells proliferation by directly targeting Smad7

Dongguang Guo; Yaqiong Ye; Junjie Qi; Lifeng Xu; Lihua Zhang; Xiaotong Tan; Zhigang Tan; Xiaofang Yu; Yuan Zhang; Yongjiang Ma; Yugu Li

MiR-195 has been implicated in inhibiting cell proliferation in different types of tumors. Whether it contributes to the process of thymic epithelial cells (TECs) proliferation remains unclear. In this study, we found that miR-195a-5p was highly up-regulated in the TECs isolated from the aging mice. Further experiments showed that miR-195a-5p mimic transfection inhibited the proliferation of mouse medullary thymic epithelial cell line 1 (MTEC1), whereas the transfection of miR-195a-5p inhibitor in MTEC1 had the opposite effect. In addition, miR-195a-5p had no obvious effect on MTEC1 apoptosis. Furthermore, Smad7, a negative regulator of transforming growth factor β pathway, was confirmed as a direct target of miR-195a-5p by luciferase assays. Taken together, our results indicate that miR-195a-5p inhibits MTEC1 proliferation, at least in part, via down-regulation of Smad7.


Ecotoxicology and Environmental Safety | 2018

Transcriptional profiling analysis of Zearalenone-induced inhibition proliferation on mouse thymic epithelial cell line 1

Kaizhao Zhang; Xiaotong Tan; Ying Li; Guan Liang; Zhangyong Ning; Yongjiang Ma; Yugu Li

Zearalenone (ZEA) was a mycotoxin biosynthesized by a variety of Fusarium fungi via a polypeptide pathway. ZEA has significant toxic reaction on immune cells. Thymic epithelial cells (TECs) as a crucial constituent of thymic stroma can provide unique microenvironment for thymocyte maturation, but the mechanism of ZEA affecting the TECs is poorly understood. The basic data about gene expression differences for the ZEA on thymic epithelial cell line 1 (MTEC1) will help us to elucidate this mechanism. Here, cell viability and proliferation assay and transcriptome sequencing on MTEC1 treated with ZEA were performed. 4188 differentially expressed genes (DEGs) between ZEA treated and control groups were identified, confirmed and analyzed. Our results showed that 10-50μg/ml ZEA significantly inhibited MTEC1 proliferation and arrested cell cycle at G2/M phase. Gene ontology and KEGG pathway analysis revealed that Chemokine, JAK-STAT and Toll-like receptor signaling pathway, were involved in the cell cycle pathway. 16 key genes involved in the cell cycle processes were validated and the results suggested that Mitotic catastrophe (MC) may take part in ZEA inhibition of METC1 cell proliferation. These data highlighted the importance of cell cycle pathway in MTEC1 treated with ZEA, and will contribute to get the molecular mechanisms of ZEA inhibition of MTEC1 cell proliferation.

Collaboration


Dive into the Yugu Li's collaboration.

Top Co-Authors

Avatar

Yongjiang Ma

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yaqiong Ye

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Yuan Zhang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dongguang Guo

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xiaotong Tan

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Daotong Li

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Junjie Qi

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Dan Ouyang

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li Deng

South China Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lifeng Xu

South China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge